
Modern OBSW verification with Rust and
data-oriented design patterns
ADCSS 2023

15th November 2023
Michaël Melchiore
ESTEC

1

© Airbus Defense & Space SAS 2023 ESA Contract No.140066/22/NL/GLC/ov

Export control Information

2

(1) See applicable export control license/authorization/exception in Delivery Dispatch Note.
Dissemination is only allowed to legal or natural persons with right to know who are covered by an appropriate export license/authorization/exception.

If YES :

1/ European / French regulation controlled content

2/ US regulation controlled content

Technology contained in this document is controlled by the European Union in accordance with dual-use regulation 2021/821 under Export
Control Classification Number [xExx]. (1)

This document contains EU or / and Export Controlled technology (data) :

Technology contained in this document is controlled by Export Control regulations of French Munitions List under Export Control Classification
Number [MLXX or AMAXX]. (1)

Technology contained in this document is controlled under Export Control Classification Number [xExxx] by the U.S. Department of
Commerce - Export Administration Regulations (EAR). (1)

Technology contained in this document is controlled by the U.S. Department of State - Directorate of Defense Trade Controls - International
Traffic in Arms Regulations (ITAR). (1)

© Airbus Defense & Space SAS 2023 ESA Contract No.140066/22/NL/GLC/ov

Study Context

Study “Using game engine techniques and Rust to modernize On Board software” (OXYDE)
ESA Contract No.140066/22/NL/GLC/ov

Objectives
● Demonstrate space worthiness of Rust for OBSW development
● Evaluate cost & time saving due to potential simplification of ADS SDE & Core Products
● Update reference architecture guidelines to cope with highly-concurrent, heterogeneous OBSW

Plan
● Port one of our telecom payload to Rust, using selected ECS design principles
● Target ARM HW with custom Yocto-based Linux distribution
● Demonstrate Rust development across the complete OBSW development process
● Use current payload SW validation suite as reference

O
XY

D
E

D
EV

SC

O
PE

3

© Airbus Defense & Space SAS 2023 ESA Contract No.140066/22/NL/GLC/ov

Outstanding verification constraints
● Real-time SW
● Specialized, multi-modal equipments
● Remote operations
● Cover all possibilities

Recurring, cost & time investment
● Despite significant investment in verification automation
● Long reviews with numerous iterations among peers
● Complex SW Development Env. (SDE) maintenance

Expected benefits of a (more) modern verification
● Optimized cost & planning
● Risk mitigation through quicker iterations
● Unlock advanced features verifiability

OBSW Verification Stakes

1
2

3

4

4

© Airbus Defense & Space SAS 2023 ESA Contract No.140066/22/NL/GLC/ov

Replicate C SDE for Rust development
● Rust community is aligned with our priorities
● Heavy focus on code quality
● Automated checks via (elaborated) tooling

Example: cargo-deny

● Check libraries for known advisories (CVEs…)
● Enforce licensing policy
● Deny specific libraries and version duplicates

Rust SDE is significantly leaner
● Code maintained by community
● Open, integrated ecosystem

Few limitations to be monitored
● MC/DC coverage not available (yet)
● Formal coding guidelines to be proposed

SW Development Environment

5

© Airbus Defense & Space SAS 2023 ESA Contract No.140066/22/NL/GLC/ov

Simple, asynchronous SpaceWire TC development
● Extracted typical C dev. pitfalls from manual review database

○ Memory management across API & thread boundaries
○ Buffers, dangling pointers, data copies, endianness…

● Rust encodes such constraints in its expressive type system
○ Copy vs. Clone, data ownership, borrow checker

Dynamic architecture of the PayLoad SoftWare (PLSW)
● Data and logical service dependencies, operational modes…
● Capture and maintain schedulability analysis hypotheses
● ECS engine encodes dynamic constraints through Rust type system

○ Developers implement systems as passive, stateless functions
○ Architects register systems onto execution schedules

Smart and reliable algorithm data duplication
● Prevent data corruption due to concurrent state updates during backups
● Minimize Flash device power on cycles to maximize device lifetime
● Developers encode business specific constraints in PLSW design

Development Use Cases

6

© Airbus Defense & Space SAS 2023 ESA Contract No.140066/22/NL/GLC/ov

Rust provides a promising framework for automated, compile-time verification
● Expressive & flexible type system with unique semantics
● Leveraged by everyone to build efficient & reliable SW
● Emerging open, integrated tooling ecosystem

○ Property, fuzz testing: proptest, cargo-fuzz, afl…
○ Advanced code/model checkers: MIRI, Kani, Loom

Significant opportunities to optimize OBSW verification activities
● Focus manual reviews focus on problem understanding (Specification - Why?)
● ECS provide an architectural framework to statically enforce typical OBSW constraints
● Prepare separation of concerns in line with OSRA/SAVOIR principles

Currently identified enablers on which we should collaborate
● Spaceworthy OS/HW support
● OBSW-subset characterisation of the Rust ecosystem
● Ecosystem maturity growth

Conclusion

Ongoing industry initiatives !

7

Thank you

Airbus Amber
8

	Slide Number 1
	Export control Information
	Study Context
	OBSW Verification Stakes
	SW Development Environment
	Development Use Cases
	Conclusion
	Slide Number 8

