
AI FDIR
Ondrej Harwot

ADCSS 2023, 15th November 2023



Agenda
• Introduction
• Data
• AI design
• AI deployment
• AI V&V
• Summary



Huldians

Offices

Huld (former SSF/SSC 
Space System Finland/Czech)
Technology Design House 

Finland
Espoo, Vantaa, Hyvinkää, Tampere, Jyväskylä, 
Kuopio, Kotka, Vaasa, Seinäjoki, Oulu, Ylivieska

Czech Republic
Prague, Brno

Revenue

(2020)
M€

(On-Board) Software Development
• 17 launched satellites carrying 

software designed or verified 
by Huld and 

• 15 under work or waiting to be 
launched

• AI
• GNSS
• FPGA



Introduction



"The idea sounds (a bit) 
crazy. The real question is if 
it's crazy enough to actually 
work."



HERA mission

• Planetary defense mission
• Cooperation with DART
• Characterize impact
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AI FDIR Data



data

design AI for you



What are we looking for?



[1] Curing XMM-Newton's reaction wheel cage instability: 
the in-flight re-lubrication experience



[2] Cage 
Instability of 
XMM-Newton's 
Reaction Wheels 
Discovered 
during the 
Development of 
an Early 
Degradation 
Warning System



[3] New 
Telemetry 
Monitoring 
Paradigm with 
Novelty 
Detection



[3] New 
Telemetry 
Monitoring 
Paradigm with 
Novelty 
Detection



[3] Discovering 
outliers in the 
Mars Express 
thermal power 
consumption 
patterns



[4] Modern Machine Learning Methods
for Telemetry-Based Spacecraft Health Monitoring



Dataset preparation is problematic

• Big thanks to ESA for providing datasets from two spacecrafts 
• Data are under NDA
• Failure event usually missing
• Annotations, cleaning
• Understanding meaning of each telemetry point requires deep 

understanding of the spacecraft/payload/instrument
• Data are spacecraft specific
• Data availability – train model before actual spacecraft exists

• ESA activity: Annotating Large Satellite Telemetry Dataset For Esa 
International AI Anomaly Detection Benchmark



AI FDIR design



Decision made

• Observe each subsystem separately
• Smaller models

• Observe all subsystems in one big model
• KPI not better than above approach
• Can discover (in theory) unseen an unpredicted dependence 

between systems
• Include TC

• Model knows what shall happen
• Very complex development, system understanding necessary, 

time sync



Training approach

• Supervised learning: 
• a model is trained on labeled data to classify anomalies based on 

previous encounters. Only known anomalies from the training 
data can be classified correctly.

• Unsupervised learning: 
• a model is trained on unlabeled data to automatically detect 

anomalies (e.g., 1% of the most suspicious events).
• Semi-supervised learning: 

• a model is trained solely on nominal data to effectively identify 
new anomalies that may arise but testing on artificially created 
anomalies



AI architecture

• Encoders - Siamese networks
• identical subnetworks sharing weights 

and are trained on pairs of inputs, one 
being true and one false

• Outlier detector - KNN
• k-nearest neighbors algorithm 

• Other tested approaches include 
• Convolutional encoder, convolutional 

variational, LSTM, isolation forest, one 
class SVM



AI architecture



AI FDIR integration



Our target: fit one core of Leon 3, no OS, limited memory, 
avoid affecting main OBSW



Convert Python into C/C++/HDL
• Fdeep

• https://github.com/Dobiasd/frugally-deep
• C++ templates, Eigen, JSON
• Need OS to compile

• uTensor
• https://github.com/uTensor/uTensor
• Primary target platform ARM
• extremely light-weight 

• TFMin
• https://github.com/PeteBlackerThe3rd/TFMin
• converts CNN into pure C++, Eigen dependency
• Supports only TF 1

https://github.com/Dobiasd/frugally-deep
https://github.com/uTensor/uTensor
https://github.com/PeteBlackerThe3rd/TFMin


Convert Python into C/C++/HDL
• Apache TVM

• https://github.com/apache/tvm
• Compilation of deep learning models into minimum deployable modules
• CPU, GPU, Xilinx, C, C++

• MATLAB Coder
• Not free – no GitHub
• Output can be C or HDL

• Manual Approach
• The real amount of work makes this approach unfeasible
• Doubts the output provide better code than automated approach
• Any change in architecture complicated

• Linux + (C)Python

https://github.com/apache/tvm


Selected solution
• TensorFlow Lite for Microcontrollers

• https://github.com/tensorflow/tflite-micro
• Good TF support
• Possible in-orbit update
• Internally use FlatBuffers
• No big-endian architecture support (Leon Sparc is BE)
• It is necessary byte-swap SOME bytes in FlatBuffer
• The version of TF and TFLM must match
• Hard to port any patch between TF/TFLM versions

https://github.com/tensorflow/tflite-micro


Quantization, range tuning
• Model training in float/double
• Execution in int32/int16/int8 faster (SIMD, reduce memory bandwidth)
• Dynamic range limited, quantize coefficients into integers

• Leon Sparc target no SIMD support => both floating-point and integer 
multiplications require 32-bit numbers and execute in a single cycle.

• TFLM's 8-bit integer quantization 
reduces precision with a 4.35% 
average prediction difference and 
increases code size by 8.18KB, while 
reducing the model size by 31.16% 
(19.36KB).



Results - memory

• RAM – 20 kB
• ROM - 750 kB



Results - speed

• Total inference time 75 ms



AI FDIR V&V



KPI measurements

• Similar problem mentioned in data section - failure event usually 
missing

• Bias in input data – 99% of events does not contain “failure event” 

True positive 1.0 can be achieved simple way –
report event all the time – but this not what we 
want



Integration V&V

• Model after integration behavioral match Python prototype
• Usually 100% match is not possible due to

• Quantization
• Double / float / integers
• Even two versions of TF produce slightly different results
• Rounding



Rest of system V&V

• The AI is 10% of the whole system
• Remaining 90% is “common” C/FPGA code responsible for 

execution, input prepare, check output, “FDIR” etc.
• ECSS standards

• Performance (execution time) measurement
• Memory bandwidth can be limitation



Summary



• KPI – much better than assumed at the beginning of the project 
• The inference time within limits as well

• Model suitable to run in single core of Leon Sparc without any 
modification, no GPU, no FPGA, no additional “acceleration card”

• Emphasis on early detection of anomalies – while they are small and 
before they grow and become a problem

• Benefits of running on spacecraft

Details published “ON BOARD TELEMETRY ANOMALY 
DETECTION USING MACHINE LEARNING, BiDS 2023”



Questions

• Industry adoption curve
• Can it reduce cost?
• Data availability
• AI (FDIR) V&V approach
• Transfer learning
• Benefits to traditional 

approach
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