
OBSERVATION OF
REAL-TIME
DEPENDABLE SYSTEMS
ADCSS2023

André Pedro | Research Scientist

andre.pedro@vortex-colab.com
COLLABORATIVE LABORATORY IN

CYBERPHYSICAL SYSTEMS AND CYBERSECURITY
www.vortex-colab.com

Company Confidential © Capgemini 2023. All rights reserved | 2

TALK OUTLINE
1

INTRODUCTION

CONTEXT & MOTIVATION

CHALLENGES

CONCEPT

2
REFERENCE ARCHITECTURE

AS USUAL

WITH OBSERVATION

3
CONTINUOUS OBSERVATION

BY SOFTWARE

HW-ASSISTED

HYBRID

CONCLUSIONS

Company Confidential © Capgemini 2023. All rights reserved | 3

1 CONTEXT & MOTIVATION

Microservices

1 CONTEXT & MOTIVATION

Microservices software architecture is being adopted in
general-purpose dependable systems to deal with an
exponential increase in software complexity.

On Microservices
Microservices

Orchestration

Container
Runtime

Kernel

Hypervisor

Hardware

Our white-paper: "A. de M. Pedro, M. Cardoso: Polarstar PoC: Bringing Microservices to the RISC-V Ecosystem.
April 2023."

However, adoption of cloud-native/edge-native techniques
in safety-critical and real-time systems presents several
challenges that need to be overcome, such as constrained
resources, isolation, freedom from interference, among
others.

Hypervisor

1 CONTEXT & MOTIVATION

Static-Partitioning Hypervisor software is being adopted in
real-time systems to deal with the strong isolation of an
exponential increase in software components and mixed real-
time applications with non-real-time ones.

Using a static-partitioning hypervisor can improve the
reliability and safety of real-time systems, while also allowing
for greater flexibility and control over the system’s resources.

However, It is hard to configure and ensure the given resources
are working according to the systems' requirements.

On Virtual Machines

Hypervisor

Orchestration

Container
Runtime

Microservices

Kernel

Hardware

Our paper: "V. Rodrigues, A. de M. Pedro: llhsc: A DeviceTree Syntax and Semantic Checker. DSN-W 2023."

1 CONTEXT & MOTIVATION

Runtime Monitors are well known as form of watchdogs
and are being adopted to act as a safety net, ideally non-
intrusive.

• Runtime Monitoring enables continuous observation of real-time
dependable systems. The continuous observation of safety-critical
embedded systems, in a non-intrusive way, needs co-design of trace
features for new SoCs.

• Runtime verification of spatio-temporal properties can also be used
for hardware resources.

On Monitoring

Orchestration

Container
Runtime

Microservices

Kernel

Hypervisor

Hardware

Watchdogs are
transversal

Our paper: "A. de M. Pedro, T. Silva, T. F. Sequeira, J. Lourenço, J. C. Seco, C. Ferreira: Monitoring of Spatio-
Temporal Properties with Nonlinear SAT Solvers. FMICS 2022."

1 CONTEXT & MOTIVATION
Example of a Complex Software Stack

Kubernetes

containerd

runc

Microservices

Kernel / OS

Hypervisor

Hardware

Container Runtime Interface

Container Runtime

Application Software

Software Platform Tech Bricks

Vendor-Specific
Services

Note: The icons and logos used on this slide are for illustrative purposes only.

Orchestration

Container
Runtime

Microservices

Kernel

Hypervisor

Hardware

1 CHALLENGES

- A concept that clashes with the traditional Conservative Development Cycles

- Is it possible to show that Correct-by-Design is no longer feasible? Too Flexible

- Optimize Data Serialization/Deserialization Performance (Latency)

On Dependable Systems (within our context)

Microservices

Virtual Machines

Runtime
Monitoring

- Flexibility on Resource Allocation and Control

- Hard to Debug and Configure (error-prone)

- Describe the Reference Workload of SW-HW Co-Design

- Design and Implement Efficient and Correct Monitors

- Determine the optimal level of resource usage for monitors to avoid
mimicking implementations while still effectively observing the system

- Secure Monitoring and Execution (monitor is the preferred spot for an
attacker)

1 CONCEPT

Orchestration, Containerization
and Static-Partitioning with
Continuous Observation as a
Mixed-Criticality Platform with
High Reliability.

Continuous Observation of Microservices and Virtual Machines

Note: The polar plot is for illustrative purposes only.

1 CONCEPT
Tradeoffs

PROS
• Microservices allows the system to scale and

evolve (add new features, update old features,
include new and more reliable and robust features)

• VMM allows the system to run as it is on a different
silicon and ideally allows the decoupling of
software and hardware

• RV enables More Reliable Software
on CoTS Platforms with FPGA-based accelerators

• Monitoring at development and deployment time
with CI/CD (Agile Practices; Tracking)

• Provides increased level of safety and security to
Edge devices in Space

• Software Segregation is done at different levels. It
can help with certification.

CONS
• Neophobia

• Microservices introduces communication
latency but they do not result in any
execution overhead

• VMs introduces latency and
execution overhead on execution units

• VMM Boot time Increase

• It can be argued that excessive
flexibility goes against the principle of
being correct-by-design

• Complex than Monolithic

Company Confidential © Capgemini 2023. All rights reserved | 13

2 REFERENCE ARCHITECTURE

Company Confidential © Capgemini 2023. All rights reserved | 14

REFERENCE ARCHITECTURE

Real-time Applications with a Virtual Machine
Monitor (VMM) or Hypervisor

14

• VMs guarantee isolation between
applications;

Reference Architecture for
Real-Time Applications

HEC

Hypervisor

CORE 1 CORE 3

CORE 4

CAN

Ethernet /
TSN

CORE 2

HW
ACCELERATORS

FPGA

VPU

TPU

HIGH-
SPEED IO

PCIe / MMIO

Hardware with NOEL-V, or
CVA6 Soft-Cores

Note: The icons and logos used on this slide are for illustrative
purposes only.

• Containers run the microservices in the
different VMs;

• Lightweight orchestrator coordinates
the microservices running on different
VMs;

• A Strong Static-Partitioning Hypervisor
allows the mixing of critical
microservices with normal microservices
and with real-time applications.

• VM runs AI Inference

Company Confidential © Capgemini 2023. All rights reserved | 15

ENABLING SAFETY ON
HIGH-END EMBEDDED PLATFORMS

• The future Space Edge devices requires an in-
depth approach to enable flexibility in resource
allocation without discarding guarantees of time,
space and energy efficiency. Observation is key
here.

• Runtime verification can witness
these time, space and energy constraints (e.g.,
safety and performance requirements) through
continuous observation of the system.

• Continuous observation is a promising feature
to achieve high reliability via non-intrusive
monitoring on a running system.

Monitoring IP Block Add-on for
observation of Embedded
Applications within a platform
A high-end central computer (HEC) running a
strong static-partitioning hypervisor with high
assurance by continuous observation

CPU/Cluster
RV64 IP Block

High-Speed
Connected

Devices

Low-Speed
Peripherals

Memory
IP Block

Reference Architecture with Observation
for Real-Time Applications

HEC

Hypervisor

CORE 1 CORE 3

CORE 4

CAN

Ethernet /
TSN

CORE 2

HW
ACCELERATORS

FPGA

VPU

TPU

HIGH-
SPEED IO

PCIe / MMIO

Hardware with NOEL-V, or
CVA6 Soft-Cores

Monitoring
IP Block

Monitor

Company Confidential © Capgemini 2023. All rights reserved | 16

3 CONTINUOUS OBSERVATION

VORTEX OBSERVATION SUITE

VORTEX Suite enhances the dependability of Embedded Systems by employing automatically
generated correct-by-construction monitors to constantly monitor their behaviours. This allows
life-critical applications to coexist with non-critical applications, ensuring utmost reliability.

VORTEX Suite has the capability to utilize tracing mechanisms found in modern SoCs, or it can opt
for FPGA-assisted tracing and monitoring.

VORTEX Suite provides support for various types of monitors, including:

1. Pure software monitors that are implemented entirely in software.

2. Pure software monitors that run on a dedicated (deterministic) processor core in isolation.

3. Pure hardware monitors that are automatically synthesized from High-Level Specifications.

4. A hybrid approach combining elements of the above methods (WiP).

Enables our Reference Architecture on Modern SoCs

VORTEX OBSERVATION SUITE

• Formalize the requirement(s) in the specification language

• Generate software monitors based on the formalization

• Locate a memory mapping region that is exclusive for readers (do not perform any writing
operations) and another region exclusively for writers (do not perform any reading operations)

• Provide this memory mapping to the OS or Generate Hypervisor Configuration with that memory
map

Use Case 1: Pure software monitors that are implemented entirely in
software

VORTEX OBSERVATION SUITE

• Formalize the requirement(s) in the specification language

• Generate software monitors based on the formalization

• Locate a memory mapping region that is exclusive for readers (do not perform any writing
operations) and another region exclusively for writers (do not perform any reading operations)

• Enable deterministic Memory Mechanisms to receive data on the dedicated core

Use Case 2: Pure software monitors that run on a dedicated
(deterministic) processor core in isolation

VORTEX OBSERVATION SUITE

• Formalize the requirement(s) in the specification language

• Generate source-code monitors based on the formalization

• Locate a memory mapping region that is exclusive for readers (do not perform any writing
operations) and another region exclusively for writers (do not perform any reading operations)

• Generate IP Monitor Block with the Library using HLS

• Add IP to the Reference Design (including the memory mapping)

• Communicate with Hardened Cores via DMA (roughly speaking, registers in the Fabric are
mapped to the memory region and circular buffers match in a transparent way)

Use Case 3: Pure hardware monitors that are automatically
synthesized from High-Level Specifications

VORTEX OBSERVATION SUITE
3 Commercial off-the-shelf Single Board Computers (CoTS SBCs)

Microchip ICICLE KIT
Polarfire SoC Arty A7

Xilinx Artix-7 FPGA
(tracing offload)

IMX8QM SoC

VORTEX OBSERVATION SUITE
What is open/free of use in VORTEX Observation Suite ?

Available in https://github.com/anmaped/rmtld3synth and https://github.com/anmaped/rtmlib .

The Toolchain that automatically
creates source-code monitors from
High-Level Specifications

The Library allows for the integration of real-time monitors
as concurrent tasks, either in a lock-free and wait-free
manner or through high-level hardware synthesis

Including
examples of
coupling the
monitors

https://github.com/anmaped/rmtld3synth
https://github.com/anmaped/rtmlib

VORTEX OBSERVATION SUITE

• The AI-assisted formalization of high-level requirements to be used by our tools

• The Library that couple tailored Hardware Monitors

• The tailoring of the observation of Data and Instructions on NOEL-V Soft-Core (WiP)

• The Demos and Examples for Commercial Platforms

• Our new IP Block (WIP) that accelerates software monitors but also enables (low-level)
monitoring of

1. Bus Contention and Bandwidth (e.g., AMBA),

2. Quality of service in Network-on-Chips, and

3. Variety of non-functional behaviours with Data and Instruction level operations for
NOEL-V Cores.

What is closed in VORTEX Observation Suite ?

CONCLUSIONS

• Our automated approach enables the generation of monitors from high-level
specification languages

• These specification languages have the ability to reason about both time and space.

• With this approach, we can observe a vast range of behaviours without manual
construction of monitors

• The scalability of our solution ensures that complex monitors can be generated as
needed, especially with the increasing demand in AI applications

• The behaviours are transversal to the software and hardware architecture

• The behaviours observed by our monitors span across both software and hardware
architecture, ideally ensuring requirements coverage throughout the entire system

• Most importantly, our generated monitors are trustworthy

OBSERVATION OF
REAL-TIME
DEPENDABLE SYSTEMS
ADCSS2023

André Pedro | Research Scientist

andre.pedro@vortex-colab.com
COLLABORATIVE LABORATORY IN

CYBERPHYSICAL SYSTEMS AND CYBERSECURITY
www.vortex-colab.com

Company Confidential © Capgemini 2023. All rights reserved | 26

OTHER SLIDES

	Observation of�real-time�dependable systems
	TALK Outline
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 9
	Slide Number 11
	Slide Number 12
	Slide Number 13
	REFERENCE ARCHITECTURE
	Enabling SAFETY ON�High-End Embedded PLATFORMS
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Observation of�real-time�dependable systems
	Slide Number 26

