

The PLATO On-board data-processing System – A Comprehensive Overview November 13th, 2023

17th ESA Workshop on Avionics, Data, Control and Software Systems Claas Ziemke on behalf of the PLATO Team

THE PLATO MISSION

- ESA Cosmic Vision 3 Mission (M3)
- Science Goals
 - Detect terrestrial exoplanets in the habitable zone of solar-type stars
 - Characterize their bulk properties
- Orbit: L2 Halo
- Quaterly 90 degree roll
- Launch: end-of 2026
- Down-link budget: 435 Gbit/day ~ 5.15 Mbit/s

PREVIOUSLY ON EXOPLANETS (1)

PREVIOUSLY ON EXOPLANETS (2)

Mission	Launch	CCDs	MPixel	Targets
CoRoT	2006	4	16.78	12k
Kepler	2008	42+4	94.62	170k
TESS	2018	16	67.11	>10k
PLATO	~2026	96+8	1952.6	3600k

- 24 + 2 Cameras are mounted on a single optical bench
 - 4 Camera Groups
 - 6 Normal Cameras per Group
- Refractor
 - 4 Full frame CCDs by e2v
 - 4510x4510 pixel each
- 25s (nominal) cadence
 - Staggered readout
 - One CCD every 6.25s
- Using multiple cameras increases
 - Signal to noise ratio
 - Robustness
 - Field-of-view

Cameras on optical bench (Mechanical-Therma-Dummies)

THE PLATO INSTRUMENT

- Camera Subsystem
 - 24 Normal cameras
 - 2 Fast cameras
 - 2 Normal AEUs
 - 1 Fast AEUs
- DPS Subsystem
 - 12 Normal data processing units
 - 2 Fast data processing units
 - Routers and PSUs
 - Instrument Control Unit

EM BENCH @ DLR BERLIN

AVM BENCH @ TAS-F CANNES

STATUS AND SCHEDULE

- Critical Milestone successfully passed
- All Payload Unit CDRs successfully passed
- Payload QR on-going
- On-board software CDRs successfully passed or in progress
- Telescope FM serial manufacturing & calibration has started
- S/C CDR currently planned for Q1 2024
- Ground-segment design review currently planned for Q1 2024
- Launch end-of 2026

THE FRONT-END ELECTRONICS

- Analog Part
 - CCD Management
 - High-Precision HKs
- Digital-Part
 - FPGA
 - Buffer
 - SpW Transceivers
 - One SpW link per N-FEE
 - DPU \rightarrow FEE = 10Mhz
 - FEE \rightarrow DPU = 100MHz
 - Windowing
 - One CCD ~38MByte
 - 38MB/6.25s~50Mbps
 - Up to 300.000 windows per camera
 - Up to 10% of the whole CCD can be selected

DATA REDUCTION AT THE SOURCE

- Data that is not produced does not need to be processed
- If production is mandatory (only full CCD lines can be digitized) it is most efficient to discard not needed data immediately

NORMAL DATA PROCESSING UNITS

- Functions
 - Camera management (2 Cams per DPU)
 - Science / Data reduction
- Hardware
 - GR712RC Dual-core Leon3 CPU
 - 256 MB SDRAM
 - No Non-volatile memory
- Software
 - RTEMS 4.8 (Qualifiable version)
 - Mixed C/C++ implementation (based on LESIA proprietary lib)

PLATO DATA PRODUCTS

- Number of science targets is larger then down-link capacity
- Data reduction by the DPUs is needed

	Source	Name	Description	Number	Bits
Data producto	N-DPU	IMG	Imagette (6x6 Pixel)	27500	576
Data products	N-DPU	S_FX	Flux (Lightcurve) 50s	25050	40
• Imagettes	N-DPU	S_FX_EFX	Extended Flux (Lightcurve) 50s	2600	72
	N-DPU	S_FX_NCOB	Flux + Centroid 50s	3300	104
• Flux (Lightcurves)	N-DPU	S_FX_EFX_NCOB_ECOB	Extended (Flux + Centroid) 50s	400	200
• Centroid	N-DPU	L_FX	Flux (Lightcurve) 600s	63200	88
	N-DPU	L_FX_EFX	Extended Flux (Lightcurve) 600s	6600	120
 Background 	N-DPU	L_FX_NCOB	Flux + Centroid 600s	3300	216
 Offset 	N-DPU	L_FX_EFX_NCOB_ECOB	Extended (Flux + Centroid) 600s	400	312
· Olisee	N-DPU	SAT_IMG	Saturated Imagette	1185	1130
• Smearing	N-DPU	BACKGROUND	Background Values	3000	80
	N-DPU	OFFSET	Offset Values	8	64
	N-DPU	SMEARING	Smearing Pattern	18040	20
	F-DPU	IMG	Imagette (6x6 Pixel)	325	576
	F-DPU	FGS_IMG	FGS Imagette	40	576
	F-DPU	BACKGROUND	Background Values	100	80
	F-DPU	OFFSET	Offset Values	8	64
	F-DPU	FINE_GUIDANCE_DATA	Fine guidance data	1	952

ALATO 2.0 MAR

ON-BOARD DATA PROCESSING

SCIENCE DATA FORMAT

- In order to optimize compression efficiency and throughput
 - The Science packets contain nearly no meta-data
 - Each science packet is referred-to as "Collection"
 - Each "Collection" is accompanied by a "Companion packet" specifying the Collection's contents

	0	1	2	3	4	5	6	1	8	9	10	11	12	13	14	1	15
0	Pack	acket Version Type Sec. APID = NCxx_S															
1	Se	q. Sequence Counter															
2		Packet Length															
3	PUS Version S/C Ref. Time										S	ervice	= 21	12			
4	Subservice = 3									Mes	sage	Туре	Cou	nter I	NSB	<u>;</u>	
5	Message Type Counter LSB								Destination ID MSB								
6	Destination ID LSB								Packet Timestamp Coarse MSB								
7	Packet Timestamp Coarse Cont.									Pack	et Tim	nestan	np C	oarse	Co	nt.	
8	Packet Timestamp Coarse LSB									Pac	ket T	imesta	amp	Fine	MSE	3	
9	9 Packet Timestamp Fine LSB									_	Spa	are	_				
10	Exposure Timestamp Coarse MSW																
11	Exposure Timestamp Coarse LSW																
12	Exposure Timestamp Fine																
13	Configuration ID (0-65535)																
14	QL Collection ID (0-32767)																
15							Ima	gette	1 Pixe	el 1							
••••							Ima	gette	1 Pixe	el 2							
••••	Imagette 1 Pixel A																
••••	Imagette 2 Pixel 1																
••••	Imagette 2 Pixel 2																
	Imagette 2 Pixel B																
	imagette N Pixel 1																
••••	Imagette N Pixel 2																
••••																	
••••	Imagette N Pixel Z																

INSTRUMENT CONTROL UNIT

- Functions
 - Instrument management
 - Booting DPUs
 - SpW network management
 - Further data reduction (Compression)
 - Payload level FDIR & Autonomy
- Hardware
 - UT700 single core Leon3 CPU
 - FPGA Compression Board
 - 2 x 512 MB SDRAM + 16 MB MRAM + PROM
- Software
 - ASW RTEMS 4.8 (Qualifiable version) / C implementation
 - BSW Bare-metal C super-loop

LOSSLESS COMPRESSION

- Golomb-code with custom pre-processing implemented in FPGA
 - Difference between data and data model (running average) is taken
 - The remainder is basically noise
 - Overlap and interleave is applied (0, -1, 1, -2, 2, -3, etc.)
 - Result an array of small integers (around 5 bits)
 - These will be encoded using a Golomb-code
 - Model is updated
 - Model is reset after 8 cadences

13.11.2023, ESTEC, Noordwijk, The Netherlands

- Functions
 - Camera management
 - Fine guidance
 - Science
- Hardware
 - MDPA single core Leon2 CPU
 - Acceleration FPGA
 - 8MB SRAM + 128MB DRAM
 - PROM
- Software
 - RTEMS 4.8 (Qualifiable version)
 - Mixed C/C++ implementation (C++ only for GNC algorithms)

Figure 2-1: FEU Block Diagram

- S/C attitude sensors are not precise enough
- Fast-cameras will be used as high-precision star trackers •
- Performance •
 - Max. latency 3750ms (relative to middle of integration) => 300ms for SW •
 - Noise Equivalent Angle (NEA) 25 milliarcseconds (x/y)
- FGS packet every 2.5s to S/C •
 - Quaternion

ON-BOARD DATA STORAGE

- SVM Solid-state mass-memory (SSMM)
 - ICU sends data to dedicated SpW Logical-Addresses
 - A SpW Logical-Address is allocated to a specific on-board file
 - The SSMM manages the opening and closing of files
 - The allocation of data-products to files is configurable
 - The PLATO Payload will use up to 35 SSMM files

FILE-BASED OPERATIONS

- During a GS communication window
 - The mission operations center requests the download of files from SVM SSMM
 - The data integrity and completeness is assured by the CCSDS File-delivery Protocol

Red lines represent retransmissions or retrasmissions requests

MISSION OPERATIONS

- PLATO will be operated by ESOC with EGS-CC
- The Payload SRDB exchange format is still S2K MIB (ICD v7.1)
- The Payload Flight-Operational Procedure exchange format is MOIS XML
- The FOPs are generated with the DLR Tool PROTOS and will be validated by running them on GECCOS and the EQM bench at DLR
- MIB and FOPs will be ingested/converted by ESOC into the corresponding EGS-CC data formats

SCIENCE OPERATIONS CENTER

- PLATO science operations center will be ESAC
- SOC is responsible for
- Receiving and decoding science files from MOC
- Running the TM Decoder
- Running the L0/L1 Pipeline
- Running the target programming tool

SCIENCE TM DECODING

- The TM Decoder is provided by the PLATO Calibrations and Operations team (PCOT)
- The TM decoder is
- Re-assembling the compression chunks
- Decompressing the chunks
- Re-assembling the science data-products using the companion packets
- Will be deployed as horizontally scalable Docker containers

THE WHOLE PLATO TEAM SAYS: **THANK YOU!**

