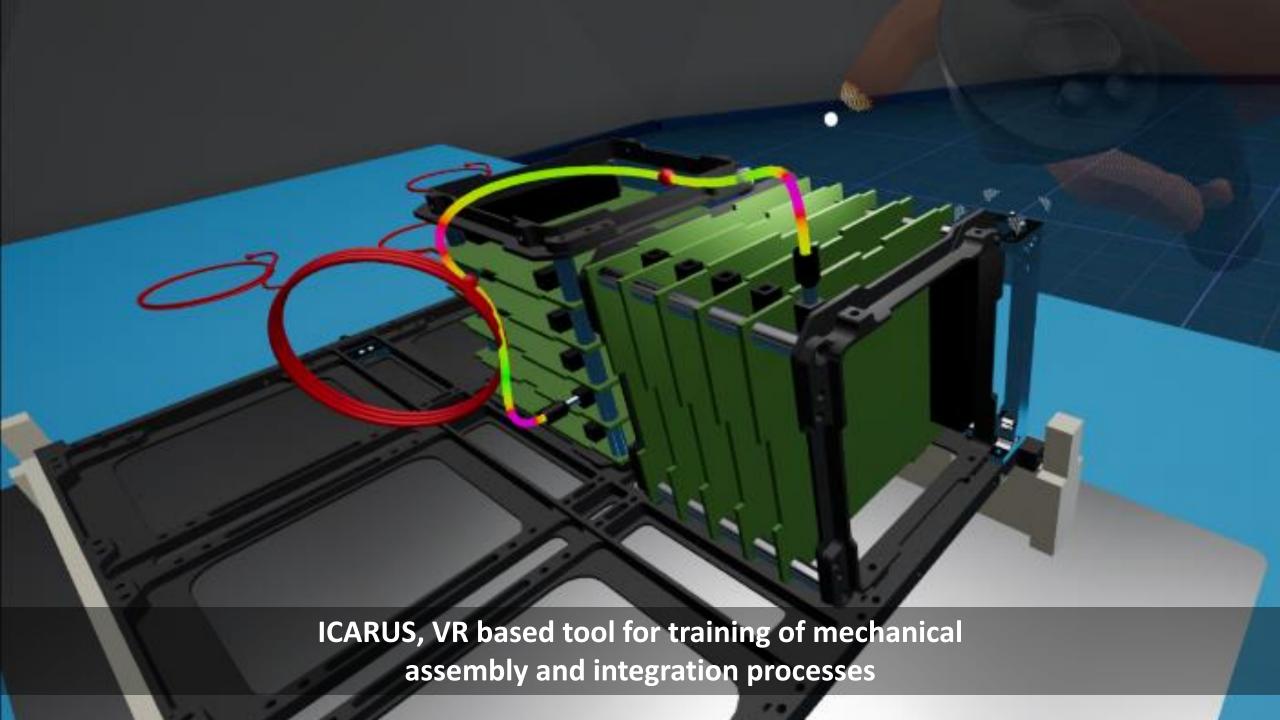
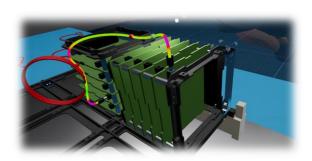
ICARUS

Towards a VR-based training platform for Assembly, Integration and Testing

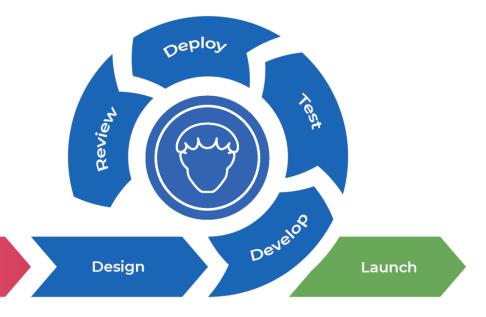
Emiel den Exter





ICARUS VALUE PROPOSITION

ID	Job to be done	Current Method	ICARUS value proposition
1	Training for assembly procedures	Use of actual hardware, where the actual moment of training is predefined and fixed in relation to the hardware manufacturing	Virtual training will provide more flexibility in the timing of the training and lower cost by not using actual physical flight hardware for training purposes.
2	Knowledge retention of procedures	Knowledge retention of recurring operations using written guidelines and best practices	Increased knowledge retention of the recurring operations through by virtual training of guidelines and best practices.
3	Support integration of the satellite(s) into the launcher	Employees are asked to work at the launch site for several days or weeks	Training of launcher integration using a virtual representation of the satellite, to be carried out remotely in a collaborative digital environment.

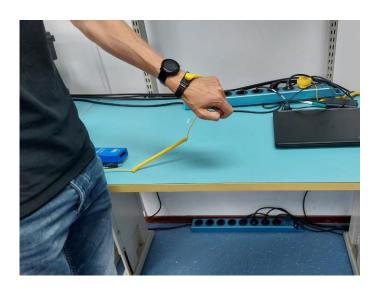


Developing ICARUS MVP as part of an ongoing GSTP project (July 2023 – September 2024)

PUTTING INTO PRACTISE

Key steps required to develop a VR tool which will be used in practise:

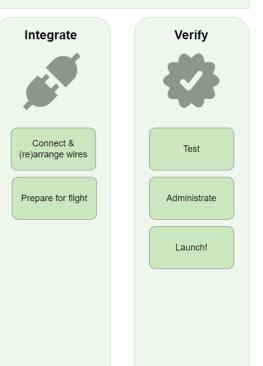
- 1. Central focus on the users and their needs
- 2. Good UX/UI at the core of the project
- 3. Iterative development, adaptive based on user input and feedback



Plan

TRAINING DESIGN

ICARUS requirements strongly based on input from ISISpace


TRAINING DESIGN

Satellite Assembly, Integration and Testing

Prepare Find & Read documentation Check procedures Prepare safe environment & Collect tools & materials Configuration & acceptance

Operational competence profile for ISISpace AIT engineering based on Training Needs Analysis (TNA)

Knowledge

- System knowledge
- Safety equipment

Skills

- Tooling skills
- Procedural skills
- Spatial awareness

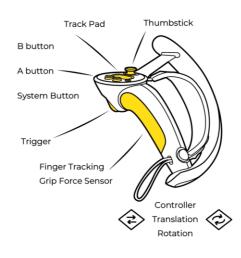
Attitude

- Responsibility
- Safety awareness
- Precise
- Proactive communication

TRAINING DESIGN

Phases	Steps in scenario			
Documentation				
Find & read documentation	 Show documentation: simplified steps are displayed on a laptop screen. A complete documentation package is available, there is no need to check this documentation in this scenario. 			
Build/check procedure(s)	N.A.			
Preparation				
Prepare safe environment and tools Collect tools & materials	Before the cleanroom: The trainee will have to select a lab coat, beard, hair and shoe covers in the right order (from top to bottom). The trainee will have to clean their own laptop with an air syringe. Attach wrist strap. In the cleanroom: Collect screwdrivers, torque tools, epoxy application and tweezers from storage.			
Configuration & acceptance	$Check\ if\ all\ required\ materials\ for\ assembly\ and\ integration\ are\ present.$			
Assemble				
Modules & elements	Assemble a battery pack.			
Stacks	Assemble a power stack.			
Integrate				
Segments	 Mount the power stack on the 6U structure. All other stacks are already placed on the structure. 			
Connect & (re)arrange wires	Connect the power stack to connectors on other stacks, and (re)arrange the wiring such that cables are as short as possible.			
Space System	Mount side frames.			

Training scenario excerpt

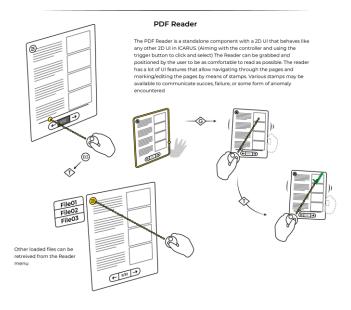


Our approach to UX/UI design for VR applications:

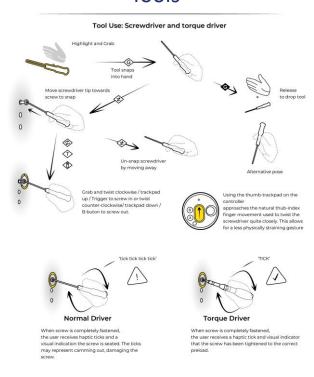
- 1. Based on requirements training scenario
- 2. Holistic approach, while keeping things as simple
- 3. Design runs slightly ahead but often parallel to development
- 4. Separate UX/UI from software implementation, but not too much
- Lots of trial and error

UX/UI DESIGN EXAMPLES

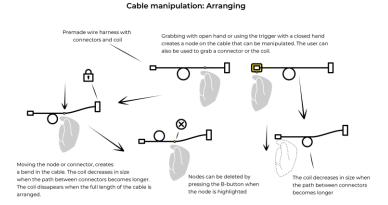
Controller Input Fundamentals


- G Grab Manipulate objects
- Trigger Main (Positive) Action
- (Negative) Action
- A Button Menu / Identify Inspect
- Control Stick Locomotion
- Scroll Scrolling

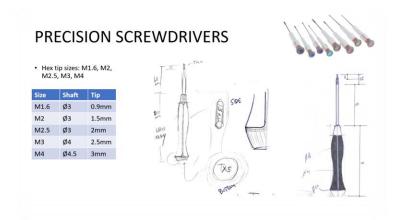
Part interaction and manipulation



UX/UI DESIGN EXAMPLES

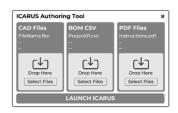

General functionality

Tools



Cables

VISUAL DESIGN



Exploration Design Model

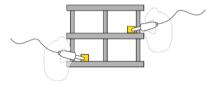
AUTHORING

Enabling trainers to create their own training scenarios in VR

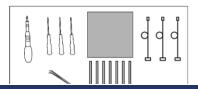
Desktop

Export STEP from CAD software
Export BOM from CAD software
Fasteners (Type, Size, Thread length)
Wires (Length, Gauge, Connectors)
Load model into ICARUS
Load PDF into ICARUS
Load BOM into ICARUS
Start ICARUS

Put on VR Headset

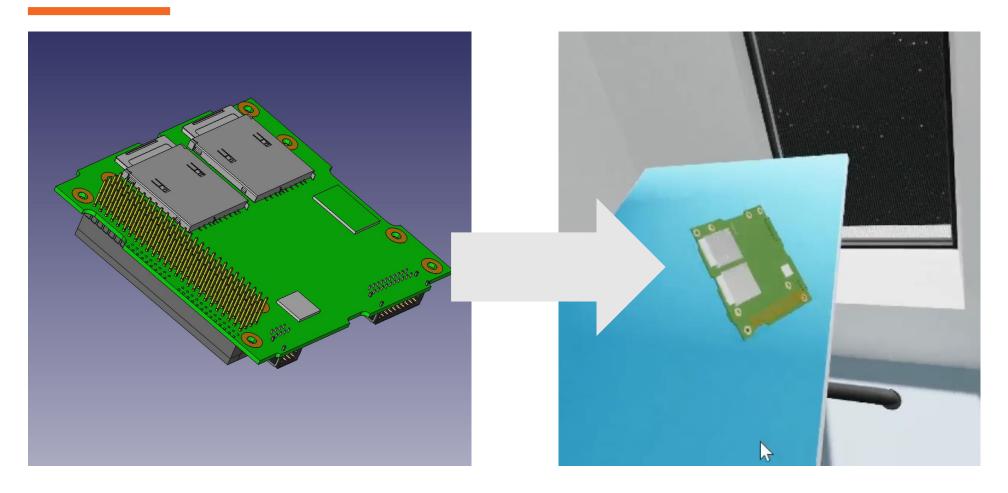


Navigate to Model / Generate model in environment


Setup / Interact with model for training

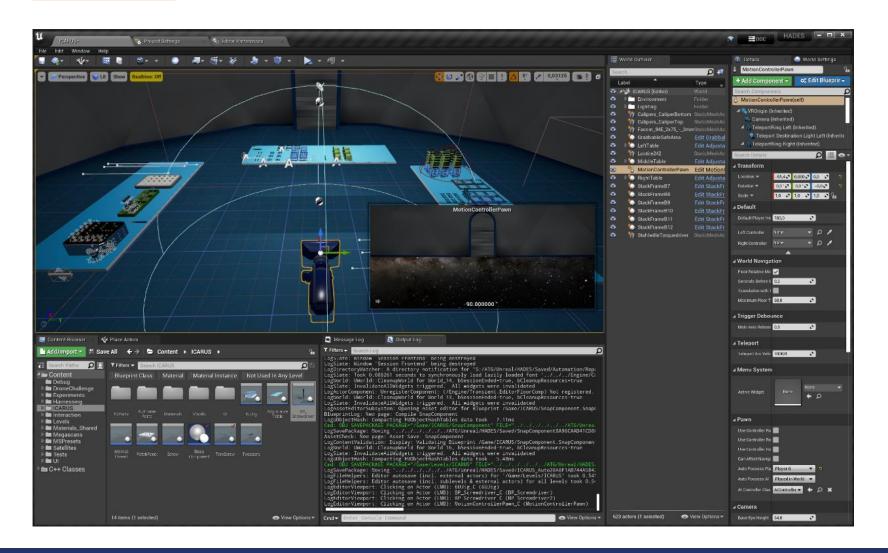
Define the assembly procedure (possibly in reverse order) Define fasteners (if automation is not implemented).

Setup Wires


Place connectors and route wires (wires can be undefined length for this step, and fixed length once the trainer is happy with the routing.

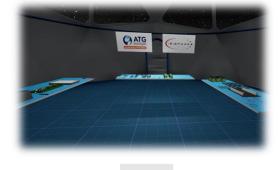
Prepare Worksite

Place components, tools and fasteners on table as needed at the start of the training Set PDF viewer to the right page Save Layout / Training


AUTHORING

Importing models from STEP files

IMPLEMENTATION



2022: Derisk

July 2023: GSTP start

Dec 2023: ESA AR/VR workshop

Sep 2024: MVP release

