

AUGMENTED AND VIRTUAL REALITY AT ESOC

GROUND STATION AND TELESCOPE MAINTENANCE SPACECRAFT OPERATIONS

Nebras Nassar (Terma GmbH), Sebastian Martin (ESA ESOC), <u>Ruediger Gad</u> (Terma GmbH), Manuel Olbrich (Fraunhofer IGD)

Results of Studies for ESA/ESOC Performed by Terma GmbH & Fraunhofer IGD 2023-12-12

Context

- Previous Activities
 - VR Virtual Lunar Base
 - AR for Interactive Manuals and Rover Operations
 - Aspects
 - Use Case Ideation
 - Integrating AR/VR & ESA Software
 - Operational Simulator
 - Mission Control System
 - Technology Demonstrators
 - ESTEC ARVR 2019 Presentation https://indico.esa.int/event/316/contributions/5256/

https://indico.esa.int/event/316/contributions/5256/

Context

• Lessons Learned

- -Integration
 - "Doable"
- -Content is Expensive
 - 3D Models
 - Authoring
 - ...
- -User Adoption / Change is Difficult
 - "Alpha Numeric Display is Enough"

https://indico.esa.int/event/316/contributions/5256/

Current Activities

Ground Station and Telescope Maintenance

Spacecraft Operations

Activity Phases

Explorative Phase

Use Case Ideation, Technology Re-assessment

Development Phase

Architecture Design, Prototype Implementation

> Application Phase Demo Application at ESOC

Added Values / Distinguishing Factors of AR/VR?

- 3D/Stereoscopic Visualization (VR, AR)
- 3D Haptic Interaction (VR, AR)
- AR Overlays (AR)
- Immersion (VR)
- Object Tracking (AR, VR)
- ...

https://indico.esa.int/event/316/contributions/5256/

Highest Voted

Use Cases

UC-06 - NEOs

UC-01 – 3D Planning

• ...

- Spacecraft Positions (Probabilities)
- Spacecraft Orbit, Attitude
- Spacecraft Vectors/Thrusters Directions

UC-02 – 3D Content

- Overlay Schematics/Visualizations with Data
- Similar Concept to "2D Mimics"
- But use 3D Models/Visualizations
 - -More Intuitive Perception
 - "Natural" 3D Perception
 - -Reduce Mental Load
 - More Capacity to Focus on Tasks
- AR/VR for Content Creation

Use Case Categories

- Local Maintenance Support for Ground Station
 - Single Local User at Ground Station
- Remote Assisted Maintenance
 Support for Ground Station
 - Local User
 - Supported by Remote User

Telescope Use Case

- Hands-free Demands
 - For Work within the Telescope

Ground Station	Ground Station
local AR maintenance support	remote AR maintenance support
Telescope Scenarios	Others

Use Case Categories

- Local Maintenance Support for Ground Station
 - Single Local User at Ground Station
- Remote Assisted Maintenance
 Support for Ground Station
 - Local User
 - Supported by Remote User

Telescope Use Case

- Hands-free Demands
 - For Work within the Telescope

Technology Assessment & Usability Considerations (1/2)

- AR/VR Device Usability
 - Some Users already Familiar
 - Typically, Short Familiarization Periods
 - Head-bound Devices
 - Often Uncomfortable after some Time
 - Text-based Input Considered Complicated
- AR/VR for Navigating 3D Worlds
 - E.g., Own Location or Selecting and Moving Objects
 - Intuitive for Most Users
- AR/VR Content
 - Should be User Maintainable
 - Required Considerable Effort and Cost, e.g.,
 - 3D Models
 - Management,
 - ...

Technology Assessment & Usability Considerations (2/2)

- AR/VR Device Usability "Good Enough"
 - Some Users already Familiar
 - Typically, Short Familiarization Periods
 - Head-bound Devices
 - Often Uncomfortable after some Time
 - Text-based Input Considered Complicated
- AR/VR for Navigating 3D Worlds
 - E.g., Own Location or Selecting and Moving Objects
 - Intuitive for Most Users.
- AR/VR Content
 - Should be User Maintainable
 - Required Considerable Effort and Cost, e.g.,
 - 3D Models
 - Management,
 - ...

"Good Enough"

Demo System at Ground Segment Reference Facility (GSRF) at ESOC

- Two Phases
 - -Preparation Phase
 - Content Creation
 - 3D Models
 - Room Alignment
 - Object Locations
 - Tasks/Procedures
 - -Operational Phase
 - Local User
 - Remote-assisted

[https://www.esa.int/ESA_Multimedia/Images/2013/04/ESOC_GSRF]

Preparation Phase

- Create 3D Models
 - Scan Room & Devices
- Room / Object Locations
 –QR Codes
- Room Alignment
 - -AR Assisted
- Prepare Content in CMS

Scanned 3D Model of a Room

Scanned 3D Model of a Device

3D Annotation

- Link 3D Models with Data
 - Locations to Show TM Data
- Aims
 - Ease of Use
 - Intuitive Process
 - 3D Placement of "Markers"

3D Annotation

- Link 3D Models with Data
 - Locations to Show TM Data
- Aims
 - Ease of Use
 - Intuitive Process
 - 3D Placement of "Markers"
- Annotation in AR and Desktop

Operational Phase

Local User with Tablet

- Interact with AR Overlays
 - View Tasks
 - Display Device Components
 - View Media and Relocate Spatial Media
- Connect to Remote Support

Operational Phase

Local User with HoloLens 2

- Same Features as Tablet
- Plus:
 - Handsfree Operation
 - Remote Display/Desktop Sharing

Operational Phase

Remote Support

- Room 3D Model View
- Video/Audio Call
- Remote AR Drawing
- Send Navigation
- See Position of Device

Remote Support Web App

Developed Applications

Content Management System (CMS)

- Manage Content, e.g.:
 - $-\operatorname{Rooms}$
 - Devices
 - Media
 - Tasks

— ...

Developed Applications

AVRGST ME Application

- Scan QR Codes
- Display and Position AR Objects
- Overlay Information and Annotations
- Establish Communication Channel

Developed Applications

Web-based Communication Application

- Audio and Video Calls
- AR Drawing

3D Model of the Room

Conclusion

Studies Aimed at:

- Identify Use Cases
- Technology Assessment
- Architecture Design
- Prototype Implementation
- Demo at ESOC

Main Scenarios:

- Overlay Information on Physical Objects
- Interactive Remote Support
- Display Data in 3D Context

AR and VR Technology is Promising:

- Improve Work Efficiency
- Enhance Communication

Remote Expert Tools

Maintenance Engineer Tools

Conclusion

Thank you very much for your attention! Questions?

Demo available outside.

Presented on behalf of the team: Ruediger Gad (ruga@terma.com)