### A Nanodosimetric Study of Lunar Radiation in the Organs of Astronauts

### <u>J. W. Archer<sup>1\*</sup></u>, M. J. Large<sup>1</sup>, D. Bolst<sup>1</sup>, D. Sakata<sup>3</sup>, H. N. Tran<sup>4</sup>, V. Ivantchenko<sup>5,6</sup>, K. P. Chatzipapas<sup>4</sup>, A. B. Rosenfeld<sup>1</sup>, S. Incerti<sup>4</sup>, J. M. C. Brown<sup>2,1</sup> and S. Guatelli<sup>1</sup>

<sup>1</sup>Centre for Medical Radiation Physics, University of Wollongong, Northfields Ave, Wollongong, NSW 2522, Australia
 <sup>2</sup>Optical Sciences Centre, Department of Physics and Astronomy, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
 <sup>3</sup>Graduate School of Medicine, Osaka University, Osaka, Japan
 <sup>4</sup>University of Bordeaux, CNRS, LP2I Bordeaux, UMR 5797, F-33170 Gradignan, France
 <sup>5</sup>CERN, Geneva, Switzerland
 <sup>6</sup>Princeton University, USA



UNIVERSITY OF WOLLONGONG AUSTRALIA

\*email: archerj@uow.edu.au

### Outline



**Multiscale Lunar Simulation** 



### **Radiobiological Validation**



Space Microdosimetry



### Multiscale Lunar Nanodosimetry Simulation

### Space Radiation





Considered one of the greatest and most uncertain risks for long-term space missions <sup>1</sup>

[1] – Cucinotta and Durante, 2006. The lancet oncology 7(5)



### Multiscale Lunar Nanodosimetry Simulation





## **I** Backscattered Lunar Radiation



- The moon was modelled as four concentric spherical shells
  - Composition and thickness of each shell based on borehole data <sup>4,5</sup>

<u>Layer 4</u> >224 cm

1.79 g/cm<sup>3</sup> 42.636%

20.218% 11.688% 7.707%

7.598% 6.091%

3.198% 0.346% 0.255% 0.146%

0.109%

0.004%

0.003% 0.001% 0.000%

• Particles propagated to a depth of 10 m

|   | Depth:<br>Density: | <u>Layer 1</u><br>0 – 22 cm<br>1.76 g/cm <sup>3</sup> | <u>Layer 2</u><br>22 – 71 cm<br>2.11 g/cm <sup>3</sup> | <u>Layer 3</u><br>71 – 224 cm<br>1.78 g/cm <sup>3</sup> |
|---|--------------------|-------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------|
|   | 0                  | 41.739%                                               | 41.557%                                                | 42.298%                                                 |
| H | Si                 | 19.026%                                               | 18.955%                                                | 19.668%                                                 |
|   | Fe                 | 13.496%                                               | 14.030%                                                | 12.277%                                                 |
|   | Ca                 | 7.541%                                                | 7.668%                                                 | 8.020%                                                  |
|   | AI                 | 6.061%                                                | 5.977%                                                 | 7.384%                                                  |
|   | Mg                 | 6.162%                                                | 6.026%                                                 | 6.156%                                                  |
|   | Ti                 | 5.144%                                                | 4.905%                                                 | 3.380%                                                  |
|   | Na                 | 0.292%                                                | 0.313%                                                 | 6.026%                                                  |
|   | Cr                 | 0.287%                                                | 0.309%                                                 | 0.264%                                                  |
|   | Mn                 | 0.176%                                                | 0.178%                                                 | 0.152%                                                  |
|   | к                  | 0.067%                                                | 0.074%                                                 | 0.086%                                                  |
|   | Gd                 | 0.004%                                                | 0.004%                                                 | 0.004%                                                  |
|   | Sm                 | 0.003%                                                | 0.003%                                                 | 0.003%                                                  |
|   | Th                 | 0.001%                                                | 0.000%                                                 | 0.001%                                                  |
|   | Eu                 | 0.001%                                                | 0.001%                                                 | 0.001%                                                  |
|   |                    |                                                       |                                                        |                                                         |

- Particles leaving the lunar surface stored in a phase space file (PSF)
- Referred to as *backscattered lunar radiation* (BLR)

[4] – Mesick, et. al., 2018. *Earth and Space Science*, 5(7)
[5] – McKinney, et. al., 2006. *Journal of Geophysical Research: Planets.* 11(6)

# I) Backscattered Lunar Radiation UNIVERSIT



# Zenith Angle Distribution



JGONG

### Multiscale Lunar Nanodosimetry Simulation







• Male and female ICRP145 tetrahedral mesh phantoms used <sup>7</sup>



- Particles were scored inside different organs by considering a spherical lattice of 10um spheres
- A virtual scoring approach used to limit steps only inside organs of interest





million tetrahedra





#### • Radiation field considered separately for GCR and BLR









Cellular particle flux in female phantom due to *GCR* 







Cellular particle flux in female phantom due to *BLR* 





 Since particles are propagated through each phantom for GCR and BLR separately, we can obtain the absorbed dose in each organ:



### Multiscale Lunar Nanodosimetry Simulation











- DNA damage is also scored using existing damage schemes <sup>9,10</sup>
- Both direct and indirect damage implemented





OF WOLLONGONG

AUSTRALIA

[9] – Lampe et. al., 2018. *Physica Medica*, 48
[10] – Nikjoo et. al., 1997. *Int J Radiat Biol*, 71(5)



Indirect damage most significant contribution



DNA Damage

- GCR
- Condensed history models are required to model a great majority of induced damage:







- UNIVERSITY OF WOLLONGONG AUSTRALIA
- DSB yields similar to that of high energy protons <sup>11,12</sup>



[11] – Zhao et. al. 2020, *Biomedical Phys. Eng. Express*, 6
[12] – Meylan et. al., 2017. *Scientific Reports*, 7(1)



- Extend to higher Z GCR particles
- Assess SPEs
- Further radiobiological validation of DNA damage and induction models
  - Radiobiological experiments are underway at ANSTO...



#### (preliminary)

### Radiobiological Validation of Geant4-DNA

### Radiobiological Validation of Geant4-DNA

- DNA damage induction and repair models have been validated using the cell survival of various cell lines <sup>13,14</sup> 5 MeV p Beam Current (A)
- These assume:
  - short irradiation periods
  - higher dose rates than space
- Radiobiological data using lower dose rates are sparse in the literature
- SPE dose rates can be targeted at the Australian Nuclear Science and Technology Organisation (ANSTO)

[13] – Chatzipapas et. al., 2023. Precision Radiation Oncology, 7(1) [14] – Sakata et al., 2020. *Scientific Reports*, **10**(1)



### Radiobiological Validation of Geant4-DNA

- Locations of DSBs can be fluoresced using  $\gamma\text{-H2AX}$  foci  $^{15}$
- This can be simulated also using a multiscale approach:



[15] – Kavanagh et. al., 2013. *Scientific Reports*, **3**(1)

Ref. 15

### Radiobiological Validation of Geant4-DNA

#### **2** DNA Damage

• Spatial structure of DSBs can be resolved using Geant4-DNA

• Shown for 5 MeV protons





### Space Microdosimetry - LGADs

<u>J. W. Archer<sup>1</sup></u>, E. G. Villani<sup>2,3</sup>, V. Pan<sup>1</sup>, Z. Pastuovic<sup>4</sup>, D. Hynds<sup>2</sup>, A. M. BaniHani<sup>1</sup>, J. Vohradsky<sup>1</sup>, D. Bennett<sup>1</sup>, M. Gazi<sup>2</sup>, S. Peracchi<sup>4</sup>, S. Guatelli<sup>1</sup>, M. Petasecca<sup>1</sup>, M. Lerch<sup>1</sup>, D. Bortoletto<sup>2</sup>, L. T. Tran<sup>1</sup> and A. B. Rosenfeld<sup>1</sup>

<sup>1</sup>Centre for Medical Radiation Physics, University of Wollongong

<sup>2</sup>University of Oxford

<sup>3</sup>Rutherford Appleton Laboratory

<sup>4</sup>Centre for Accelerator Science, ANSTO

\*email: archerj@uow.edu.au

### Microdosimetry at CMRP

CENTRE FOR MEDICAL RADIATION PHYSICS



• Development of cylindrical microdosimeters





- [16] Tran et al., 2017. *IEEE Transactions on Nuclear Science*, **65**(1)
- [17] Tran et al., 2021. *Applied Sciences*, **12**(1)
- [18] Vohradsky et al., 2022. *Journal of Instrumentation*, **17**(3)

### Space Considerations

CENTRE FOR MEDICAL RADIATION PHYSICS



- Issue with electronic noise for low LETs (< 0.8 keV/um)</li>
- Assessing use of low gain avalanche diodes (LGADs)



[19] – Pellegrini et. al., 2014. NIMA 765
[20] – Audrey, et. al., 2012. NIMB, 288
[21] – Gibaru, et. al., 2021. NIMB, 487

- Gain depends on *induced charge density*
- Induced charge can be simulated using MicroElec models<sup>20,21</sup>



### LGAD Characterisation

CENTRE FOR MEDICAL RADIATION PHYSICS



 Characterised using LGADs in collaboration with the University of Oxford<sup>22,23</sup>



[22] – Mulvey et. al., 2022. *Journal of Instrumentation*, 17(10)
[23] – Allport et. al., 2022. *NIMA*, 1037



### Thank you!

### Summary

Further radiobiological validation

undertaken





8 S Trueleus z = -3.0 to -2.75 µm - 3.0 4-- 2.5 (..... - 2.0 - 2.0 - 2.0 - 1.5 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 Position (µm) 0 --4 -0.5 -8 **≯** -8 L<sub>0.0</sub> -4 0 4 8 Position (µm)



