

Geant4 updates : EM Physics and Fast Simulation

15th Geant4 Space Users' Workshop, 5th – 7th December 2023, Hyatt Place Pasadena, Marc Verderi (LLR)

Introduction

Electromagnetic part:

- Many things happened since last Space Users' Workshop
 - We may mention:
 - Creation of a new library : G4HepEM, by Mihaly Novak (CERN)
 - Separating (heavy) initialization code to perform the many calculations- from (light) one at run time -just fetching a few numbers-
 - G4GammaGeneraProcess
 - A super process that encapsulates all gamma physics
 - Brings some performances boost (~5%)
 - But allows using option like Wookcock tracking
 - G4TransportationWithMSC
 - Merge of transportation and multiple scattering
 - Main motivation is performances, as allowing many back and forth calculations between the two, without going through the stepping manager
- Many recent activities in the EM ("standard EM") consist in code consolidation and improvements
 - Code cleaning, rationalizing, etc.
 - Consolidation like for example tackling some fragilities introduced with ICRU90
 - I will not detail
- The low energy EM, and in particular DNA, has many recent developments
- In this presentation, I will focus on recent developments, in particular those most related to space

• Fast Simulation part:

A shorter part, but with promising features, very Machine-Learning focuses

Developments in EM Domain Standard and DNA

X-Ray reflection process

Helmut Burkhardt (CERN)

- Useful for space application, for X-ray telescopes...
- ... but author, from HEP, had a different initial motivation:
 - It came as a (bad) surprise in LEP : hard (5-10 keV) X-ray photons from synchrotron radiation generated in magnets as far as 200 m from the interaction region can undergo specular (mirror) reflection on the vacuum chamber and reach the interaction region and strongly enhance detector backgrounds.
 - G.v. Holtey, et al., NIM A403, 1998
 - Strong motivation : FCC-ee studies, with in particular FCC-MDI

Main reference considered:

- B.L. Henke, E.M. Gullikson, and J.C. Davis. X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50-30000 eV, Z=1-92, Atomic Data and Nuclear Data Tables Vol. 54 (no.2), 181-342 (July 1993)
- Used to compute the real and imaginary parts of reflective index.
- Re-use existing components / tools in Geant4 for the concrete implementation
- Development illustrated in new TestEm16 example (September)
- Development is part of 11.2.

Preliminary tests from TestEm16 : scan in angle for two mean angles

DNA approach reminder

Bottom-up approach of the dose

- Initiated by ESA for manned mission to Mars
- Proceeds as:
 - Tracking phase :
 - With no "condensed history" applied
 - All individual interactions are calculated
 - Down to O(eV) for some interactions
 - Chemistery phase :
 - Diffusion of radical species, with mutual interaction
 - Both phases contribute to damages to DNA
 - ~40% + ~60% respectively
- Initially considering liquid water as tracking medium
 - More materials being added over time
 - Note : these are "particle molecule" interactions

Approach also applied to silicon, with MuElec

 Aluminium oxide, Boron nitride, and Silicon dioxide are now available in addition to the initial Silicon.

G4-DNA recent developments G4

(a)

- Improved electron transport in liquid water 10 eV 10 MeV
 - Various aspects, leading to more radiotherapy applications
 - Implemented in DNA_Option4 model
- Extend the tracking of protons from 100 MeV to 300 MeV
 - Intended for medical application (100 MeV ~ 7 cm range in water)
 - Keeping the G4-DNA proton medium interaction details
 - 5 ionized molecular states, 5 excited molecular states and electron capture
 - Treatment based on:
 - Projectile : Relativistic Plane Wave Born Approximation (RPWBA)
 - Target response : Generalized Oscillator Strength (GOS)
- Extend target material set:
 - All DNA materials (Adenine, Guanine, Thymine, Cytosine, Deoxyribose, Phosphoric acid)
 - Elastic scattering (Independent Atomic Model), Ionisation (Relativistic Binary Encounter Bethe Model), Excitation (scaled from water inelastic XS and bases ionisation XS)
 - Energy range (11 eV 1 MeV)
 - O₂ and N₂ (see after)
- Chemical stage:
 - Develop a "mesoscopic" approach to deal with diffusion times > 1 µs
- New geometries:
 - Used in moleculardna, dnadamage2 and dsbandrepair examples

formation...

- Ion formation already simulated, but with condensed history, "not very low" energy processes, no molecular description
- This motivates the development of a G4-DNA-like study

Goal is to obtain:

- Ionic density, state of ionization, spatial (altitude) distribution of ions, chemical species produced
- Starts with precise $e^- O_2$ or N₂ interactions
 - Gaseous phase, molecular description
 - Ionisation, elastic scattering, electronic excitation (**)
 - Energy range 10eV 10 MeV
- Status:
 - Cross-sections included and validated
 - As well as final state generation
 - Used in models G4AtmXXXModel, XXX = (**)
- Next step: perform first simulations by importing cosmic rays spectra at different altitudes (5 - 25km)

Geant4 Updates - EM Physics and Fast Simulation, 15th Geant4 Space Users' Workshop, December 2023

G4-DNA... in atmosphere

F. Nicolanti (INFN) et al.

- lons formed in the atmosphere by cosmic rays may have a strong impact on its composition:
 - They may dramatically change chemical reaction rates (up to 10 order of magnitudes !)
 - Studies suggest their role in precipitation, cloud cover, nucleation, ozone depletion, aerosol

BioRad III at a glance

Objective

Open multi-scale radiation effects platform for radiation protection in space

- Simulate the effects of ionizing radiation on biological matter
 - Radiation physics : particle- matter interactions in « discrete » mode
 - Radiation chemistry : production of molecular species, diffusion, chemical reactions
 - Radiation biology : early DNA dame induction and repair

In a multi-scale environment

- From space habitats to realistic human phantoms and biological cells
- No equivalent software currently accessible to the scientific community
- Open source approach
 - Based on the open-source simulation tools Geant4/Geant4-DNA and GRAS, strongly supported by ESA

BioRad III at a glance (2)

- A concertium -f O

- A consortium of 9 EU partners
 - Full contract ESA with Centre National de la Recherche Scientifique (CNRS, France)
 - 400 k€, 2 years (2021-2023)
 - Sub-contact CNRS with subcontractors
 - Centre Hospitalier Universitaire Vaudois (Switzerland)
 - Commissariat à l'Énergie Atomique et aux énergies alternatives (CEA, France)
 - G4AI Ltd (UK)
 - National Institute for Nuclear Physics (INFN, Italy)
 - Institut de Radioprotection et de Sûreté Nucléaire (IRSN, France)
 - SWHARD SRL (Italy)
 - University of Ioannina (Greece)
 - University of Sevilla (Spain)
 - Including external collaborators: Belgrade U., Serbia; JINR, Russia; Osaka U., Japan; Wollongong U., Australia

Conclusion

- BioRad III has allowed the development of key functionalities in the Geant4, Geant4-DNA and GRAS tools
 - Allowing in particular the development of a prototype multi-scale simulation platform based on the FreeCAD framework
 - □ Key components : DNA-scale chain & geometries, MINAS-TIRITH, phantoms, space habitats
- Such a platform can be used in the context of space missions, combining detailed geometries of space habitats and realistic human phantoms, down to the cellular scale
- Dedicated experiments have been performed to verify/validate recently released software for radiolysis simulations, and for radiobiological simulations based on the Geant4 and Geant4-DNA tools
- Described software is being/will be included in Geant4 and/or GRAS
- The creation of a common radiobiological database, in particular for the validation of radiobiology simulations, will probably be useful for the scientific community

Thank you !

Fast Simulation

Fast Simulation Progress

Anna Zaborowska, Dalila Salamani (CERN)

- What is "fast simulation" ? (FS)
 - In HEP "fast simulation" classically refers to "fast shower simulation"
 - And is even more restricted in practice to "fast electromagnetic shower simulation" (FS of hadronic showers are rare [1]).
- FS replaces the detailed tracking with an approximate model of energy deposition in the calorimeter(s)
 - Model is in general detector dependent [2]

On-going work in Geant4:

- Investigate usage of Machine-Learning (ML) techniques in replacement of the classical analytical & detector-specific models
 - It may happen that ML techniques resolve [1] & [2] !
- Focus on electromagnetic showers for now
- Exploit Variational AutoEncoder (VAE) model
 - Used by ChatGPT, DALL-E, ...
 - A neural-network with probabilistic connections → naturally varies the generation, request after request

Aggregates quite intense activities with LHC experiments !

Eg : Calo Challenge Workshop, 30-31 May 2023 in Frascati

Geant4 example Par04

-G4

- A new example (Anna + Dalila), demonstrates how to build a shower model using ML:
 - Extended example Par04 shows how to use Machine Learning (ML) models within GEANT4.
 - Distributed with a Variational AutoEncoder (VAE) model of showers used in fast simulation.
 - Demonstrates how to incorporate inference libraries: ONNX runtime, pyTorch, lwtnn.
 - Ability to run it on GPU (a choice done by UI command).
 - It scores energy along shower axis, performs validation of shower observables.
 - Recent additions of physical detector readout for performance benchmarking.
- Note : example Par04 is not limited to showers
 - For example, will be used to speed-up tracking in channeling process (not discussed today)

Study by Alexei Sytov

Conclusion

- EM Physics:
 - Standard EM physics package went for quite consolidation this year
 - Still active developments in DNA
 - Many topics are relevant to space domain
- Fast Simulation is exploring Machine Learning usage
 - Which looks promising
- BTW & not much discussed here, but Machine Learning usage is being expanded beyond Fast Simulation