Geant4 Simulations for Cosmic Rays

L. Desorgher, M.R. Moser, R. Bütikofer and E.O. Flückiger Physikalisches Institut, University of Bern

Overview

- Cosmic ray propagation through the magnetosphere
- Cosmic ray propagation through the atmosphere
- Conclusions

Propagation through the magnetosphere

- Tracing of charged particle motion in magnetospheric magnetic field model: IGRF+Tsyganenko
- Visualisation of trajectories and magnetic field lines
- Computation of cosmic ray cutoff rigidities and asymptotic directions

Interactive Commands

- **.** Selection of magnetospheric Model
- Selection of time period
- **.** Definition of geomagnetic activity
- **. Rigidity cutoff computation for different position, directions and time**
- Trajectory and bline visualisation

Visualisation

• 1 GeV proton • **IGRF** + **Tsy89** • 1982 January 1st

Gyration, bounce, and Drift

500 keV proton (*a*) **5.5 Re**

Geant4 Cosmic Ray Simulations

21 January 2003

Cutoff rigidities and asymptotic directions

Geant4 Cosmic Ray Simulations

21 January 2003

Cutoff rigidities

Geant4 Cosmic Ray Simulations

21 January 2003

Cutoff Rigidities vs position

IGRF 82

21 January 2003

Asymptotic directions

Alt.: 20. km Lat: 46.55 N Long:7.98 E March 26, 1995, 18 h

21 January 2003

Time Variation

•26/03/1995 •Magnetic storm •IGRF + Tsy 2001

Geant4 Cosmic Ray Simulations

21 January 2003

Cutoff vs Direction

Geant4 Cosmic Ray Simulations

21 January 2003

Propagation through Atmosphere

- •Propagation of galactic and solar cosmic rays through Earth's atmosphere
- •Visualisation
- •Computing flux of secondaries at any altitude
- •Energy deposited vs altitude
- •Isotope production

•Solar event study, neutron albedo, radiation environment estimation, isotope production, cloud formation study,

Analysis

-Aida 3.0 compliant

.User defined histograms:

- Secondary information at selected altitude
- Energy, angular distribution
- Isotope production for all the atmosphere
- Energy deposited vs altitude

Atmospheric model

Geant4 Cosmic Ray Simulations

21 January 2003

Atmospheric model

Pressure

Temperature

Geant4 Cosmic Ray Simulations

21 January 2003

Hadronic PhysicsList

.Low and High Energy model >5 GeV
.Bertini Cascade model 150 MeV- 5 GeV
.PreCompound model 0-150 MeV
.NeutronHP model for neutrons <20 MeV

Visualisation

- 2 GeV protons interacting with atmosphere
- 10 events

Geant4 Cosmic Ray Simulations

21 January 2003

Solar Proton Event Simulation

- April 15, 2001 Lockwood et al., 2002
- **. Rigidity Spectrum: Power Law index -6.4**
- 4.64 GV<P<20 GV
- •Angular distribution: zenith angle < 30 degree
- Integral flux =1.8 x 10^{-3} cm⁻² s⁻¹
- Nb of events 350000

Deposited energy vs Altitude

Geant4 Cosmic Ray Simulations

21 January 2003

Albedo neutrons

Geant4 Cosmic Ray Simulations

21 January 2003

Secondary spectrum at 3130 m

Geant4 Cosmic Ray Simulations

21 January 2003

Isotope Production

Geant4 Cosmic Ray Simulations

21 January 2003

Conclusions

- •We have developed two G4 applications for simulating cosmic ray physics.
- •The G4 application simulating the propagation of cosmic rays through the Earth's magnetosphere allows to compute cutoff rigidities and asymptotic directions for user-defined positions, direction of incidence, and time period.
- •The G4 application simulating the interaction of cosmic ray with the Earth's atmosphere needs to be validated.