Geant4 Tools for Space

Pete Truscott, Fan Lei and Ramón Nartallo Space Department, QinetiQ Ltd, UK

Bart Quaghebeur and Daniel Heyndericks BIRA/IASB, Belgium

Colin Ferguson *University of Southampton, UK*

Petteri Nieminen, Hugh Evans and Eamonn Daly *ESA/ESTEC*

QinetiQ

20th January 2003

Points of Contact

- Space Department, QinetiQ, Cody Technology Park, Farnborough, Hampshire, GU14 0LX, England
 - Dr Pete Truscott
 PRTruscott@space.QinetiQ.com
 - Tel: +44 1252 393290 / Fax +44 1252 396330
 - Dr Fan Lei
 Flei@space.QinetiQ.com
 Tel: +44 1252 393904 / Fax +44 1252 396330
 - Dr Ramón Nartallo
 RNartallo@space.QinetiQ.com
 Tel: +44 1252 393280 / Fax +44 1252 396330

• Web-sites:

- QinetiQ http://www.space.QinetiQ.com/geant4/geant_mn.html
- REAT http://reat.space.qinetiq.com
- SPENVIS http://www.spenvis.oma.be/spenvis/

Contents

- 1 Application of radiation transport simulation to spacecraft historic perspective and drivers for future development
- **2** Tools developed:

Sector Shielding Analysis Tool Multi-Layered Shielding Simulation Software General Particle Source

Geant4 Microdosimetry Analysis Tool

- **3** Project SEPTIMESS
- 4 Summary

Section 1 Application of MC radiation transport to spacecraft: History & trends

Previous applications of MC to space radiation studies

- Shielding studies based on Monte Carlo simulation applied in early 1960's (*e.g.* Hill *et al*, 1964)
- Calculations of atmospheric showers using HETC -Armstrong, Chandler and Barish (1973)
- Study of background rates in astrophysics gamma-ray missions by Dyer, Trombka, Seltzer *et al* (1975)
- Study of space-borne gamma-ray instrument performance using EGS by Dean, Lei and Knight (1989)

Trends in tools and analytical approach 1

- Previously codes tended to cover a limited range of physical processes (EM transport of leptons and photons, or highenergy hadronic simulation, *etc*)
- For some space radiation studies, vital to cover complete range of particles and physical processes
- Several codes integrated to form code suites to meet this requirement (*e.g.* GEANT3, GCALOR, MCNPX, HERMES and IRTS)
- Geant4 is really first code written from the outset to cover a wide range of physics without "bolting-together" old code

Space radiation interaction processes - a potted summary!

Trends in tools and analytical approach 2

- Previously Monte Carlo radiation analysis tools were largely limited to scientific research
- Today, the availability of high-performance low-cost computers allows greater use of more complex simulation tools
- MC simulators can now be considered as engineering tools that may be regularly employed to aid spacecraft and space instrument design
- However, important to ensure ease of access and operation by someone who isn't necessarily a space radiation effects or radiation transport expert

Trends in Systems, Missions & Technology

- Trends in missions:
 - mobile communications for higher, proton-intense orbits
 - GPS, including the proposed Galileo system, subject to the most intense radiation environment
 - increased processing power by using SOTA microelectronics and photonics
 - desire to use COTS to reduce component costs \Rightarrow accurate calc. of shielding
 - spacecraft sizes from nanosats (10 kg) to ISS dimensions \Rightarrow secondaries
- Microelectronics technology
 - rapidly decreasing feature size and increasing frequency bandwidth
 - microdose and SEE increasingly important (even terrestrially)
 - SiGe and InP in competition with GaAs. Displacement damage important
 - Use of GaAs and InP for solar cells requires accurate consideration of NIEL.
 Low energy populations and propagation important for cover glasses
 - power MOSFETs susceptible to SEB and SEGR (direct ionisation by ions, and ionisation by recoils following nuclear interactions of protons and neutrons).
 - total dose problems can arise in MEMS from charging of insulators near to micro-mechanical systems

Trends in Systems, Missions & Technology

- Packaging and shielding
 - commercially available packages and coatings available for which dose reduction is claimed
 - graded shielding may afford factor of 3 improvement in shielding against electrons

Areas for Tool Development

- Prediction of spacecraft secondaries and their spectra
 - More accurate assessment of material shielding distribution around a component/instrument
 - Generation of an engineering tool for quantifying secondaries
 - Effects of secondaries (including thermal neutrons) such as dose, damage, charge-deposition, SEE, radioactivity
 - Dose enhancement and graded shielding
- Prediction of microdosimetry effects
 - Propagation of heavy ions and secondary fragments
 - Microdosimetry down to 1 nm for SEE and biological effects
 - Consideration of track structure and influence on above
 - Correlations of energy depositions in sensitive regions for MBU and detector response

Section 2 Tools Developed

Section 2 Space Specific Geant4 Modules

- Sector Shielding Analysis Tool: 1st-order shielding assessment
- **MULASSIS:** 1D shielding tool using full Geant4 physics
- **Geant4** µdose Tool: 3D simulation of microdosimetry
- **Radioactive decay:** *induced background*
- **General Particle Source :** *specification of arbitrary source*
- CAD Front-End Tool: specification of geometry and materials for G4 STEP interface with CAD file

Sector Shielding Analysis Tool

- Objective & application:
 - To determine the physical distribution of shielding around a user-defined point in the geometry using Geant4 particle tracking facilities
 - 1st assessment of shielding as a function of position
- Functionality:
 - Uses "geantino" to determine pathlengths between material boundaries
 - Histogram of fraction of solid angle with shielding within a given interval as a function of shielding interval (+ Poisson errors)
 - 2D Histogram of mean shielding level (in g/cm², cm or radiation lengths) as a function of (θ, ϕ) (+standard deviation of shielding)
 - Output as a function of material and/or element type, as well as overall shielding (irrespective of material)

SSAT Analysis of XMM Baffle

Multi-Layered Shielding Simulation S/W

- Objective & application:
 - 1D simulation of shielding effects (planar or spherical)
- Functionality:
 - Facilities to determine:
 - Fluence as a function of layer, particle type, energy and angle
 - Integrate existing NIEL coefficients over fluence
 - Energy deposition or dose calculation as a function of layer
 - Energy deposition spectra as a function of layer
 - Uses General Particle Source
 - Interactive operation with a local implementation of Geant4
 - Also can be operated over WWW under SPENVIS

General Particle Source

- Objective & application:
 - To permit definition of an arbitrary source distribution without coding
 - By default Geant4 only allows unidirectional, monoenergetic sources
 - Definition of general source particle distributions
- Functionality:
 - Spatial : point, area source (disc, ellipse, rectangle), or simple volume (sphere, cylinder, RPP)
 - Angular : unidirectional, isotropic, cosine-law, arbitrary
 - Energy : mono-energetic, linear, exponential, power-law, arbitrary spectrum
 - **Source particle biasing** : according to point of origin, first interaction, energy
- Status
 - Currently integrated into Geant4

Section 2 General Particle Source

2D Surface sources	3D Surface sources	Volume sources	Angular distribution	Energy spectrum
 circle ellipse square rectangle 	 sphere ellipsoid cylinder paralellapiped (incl. cube & cuboid) 	 sphere ellipsoid cylinder paralellapiped (incl. cube & cuboid) 	 isotropic cosine-law user-defined (through histograms) 	 mono-energetic linear exponential power-law bremsstrahlung black-body CR diffuse user-defined (through histograms or point-wise data)

			User de	efined materials	
		Material id	Name	Chemical formula	Density (g cm ⁻³)
		Material 1	Tungsten	W	1.930E+01
 Add predefined Add new material: 	Antimony 💽				
Name:	bismuth germanate				
Chemical formula:	Be4-Ge3-O12				
Density:	7.13 (g cm ⁻³)				
🗆 Remove Tungste	n 💌				

<< Back	Reset	Update
---------	-------	--------

🙋 Done

7

🖉 Radiation models: Source pa	ricles for Multi-Layered Shielding Simulation - Microsoft Internet Explorer	
		A
A 77-	SPENVIS Project: SIGMUND	Tables
× Up	Radiation models	Plots
Index	Multi-Layered Shielding Simulation: Source particles	Help

Source particle type and spectrum

Incident particle type: proton 🔽 Number of primary particles to simulate: 10000 💌								
Incident energy spectrum: trapped protons								
Interpolation type: line	ear 🔽							
Angular distri	bution: isotropic 🔽							
Minimum angle:	0.0 degrees 💌							
Maximum angle:	90.0 degrees 💌							

<< Back	Reset	Next >>
---------	-------	---------

Radiation models: Physical models for Multi-Layered Shielding Simulation - Microsoft Internet Explorer											
★ Up Index	▲ Up Tables Radiation models Plots Index Multi-Layered Shielding Simulation: Physical models Help										
	Physical models and material cut-offs										
Simulation conditions: Hadron	Simulation conditions: Hadron Inuclear interactions										
No low-energy	neutrons										
No lepton-gan	nma 💌 transport										
Standard EM	processes										
	Material/Pa	article cut-off lengths in: µn									
Particle Material	All	p ⁺	alpha	ion							
All	1	1	1	1							
Vacuum	1	1	1	1							
Air	1	1	1	1							
Aluminium	1	1	1	1							
Silicon	1	1	1	1							
Tungsten	0	1	1	1							
	<<	Back Reset Next>>									

v

	Si	mul	atio tion	n Is		Source Models used Particles															Models used								_						
Application Scenario	Hadron-nuclear interactions	Low-energy neutron	γ-e [±] -μ [±]	LowE electromagnetics	Trapped protons	Solar protons and light ions	Cosmic ray protons	Mono-energetic protons	Reactor, fission, D-T, D-D neutron	Spallation noutron	Trapped electrons	Mono-energetic electrons	X-ray spectra	Parameterised "low-energy" hadron-nuclear	Precompound	Neutron_hp	Evaporation	Fermi break up	Fission	Photo-evaporation	Std EM interactions for hadrons/ions	Std EM interactions for leptons/photons	LowE EM interactions for hadrons/ions	LowE EM interactions for leptons/photons	Protons	Anti-protons	Neutrons	Anti-neutrons	K ⁺ , K, K ⁰	x*, π', π ⁰	Light ions	General ions/ructei	Y, X-rays	e, e	н*. н'
1	1				4	~	~	~	~	1				4	1		1	~	~	~	~			_	×		~	1	×	-	1	¥		_	
2	Ľ	~		_	1	1	1	~	1	1	_			4	1	1	¥	1	-	×	-			_	4	-	~	1	Ľ.	×	-	¥		_	_
3	Ľ	_	~		Ľ	~	~	-	Ľ	Ľ,	_			Ľ	-		Ľ,	Ý	×	¥	¥	Ý		_	Ľ	Ý	~	Ý	1×	Ľ,	×	1×	Ý	~	÷
4	Ľ	~	~	1	÷	¥	¥	-	¥	÷		_		Ľ	¥	¥	Ť	1×	V	v	V	*	-	-	¥.	-	¥	÷	1	¥	-	Ť	v	*	*
5	Ľ	1	_	¥	÷	¥	1×	×	Ť	-		-	-	÷	-		-	1×	-	1		-	-	-	÷,	-	-	÷	÷	7	÷	÷			_
7	Ľ	¥	-	¥	÷	Ť	1	-	÷	÷		-	-	÷	÷	Ť	÷	V	-	-	-	-	Ż	~	÷	-	-	÷	-	-	7	Ż	7	7	~
- 8	Đ	~	Ż	÷	Ż	Ż	÷	Ż	÷	Ż	-	-		÷	7	7	Ż	1	-	V		-	V	-	Ý	7	Ż	V	V	v	Ż	V	Ż	-	Ý
9	H	-	~	-	Ż	Ý	1	~	-	-	\checkmark	\checkmark	1	-	-	-	-	-	-	-		1	-	-	1	1	-	-	1	1	1	1	~	~	V
10		-	~	~	1	1	~	1			~	1	1				-		-	-				~	V	~			V	~	~	~	~	~	~
11		_	_	_	7	~	~	~			_									-	~				V	~						\checkmark			
12	1			1	1	1	1	4															~		1	1						~			

Badiation models: Analysis parameters for Multi-Layered Shielding Simulation - Microsoft Internet Explorer	
► Up Radiation models Index	arameters
Analysis parameters	
Fluence analysis Fluence normalisation factor: 1 /cm2 • Select particle type(s) for fluence analysis: proton • Output units: /cm2 • Fluence density type: omni-directional • Select boundaries between layers for fluence analysis: source • Select boundaries between layers for fluence analysis: source • Source • 1 2 3 4 target Energy binning mode: logarithmic • Number of bins: 15	
Lower edge of lowest energy bin: 1 keV Upper edge of highest energy bin: 1000 MeV Angle binning mode: default NIEL Coefficients	_
Select set of NIEL coefficients: CERN Output units: red(Si) Select boundaries between layers for NIEL analysis: source v 1 2 3 v 4 target Energy deposition/TID Output units: red Select layers for energy deposition/total ionising dose a	nalysis:
Pulse-height spectrum analys: Select layers for pulse-height spectrum (PHS) analysis: 1 2 3 4 ✓ Energy binning mode: logarithmic ✓ Number of bins: 15 ✓ Lower edge of lowest energy bin: 0.1 keV ✓ Upper edge of highest energy bin: 100.0 MeV ✓	
Constant Con	▼

QinetiQ

some comments /geometry/layer/delete 0 /geometry/material/add Tungsten W 1.930E+01 /geometry/layer/shape slab /geometry/layer/add 0 Aluminium 4 1.500E+00 cm /geometry/layer/add 1 Tungsten 3 2.000E-01 cm /geometry/layer/add 2 Aluminium 4 1.000E+02 mum /geometry/layer/add 3 Silicon 1 5.000E+00 mum /phys/scenario hadron-em-In /phys/cuts/material/setcut Tungsten 0.000E+00 mum /analysis/normalise 1.000E+00 cm2 /analysis/fluence/particle/add proton /analysis/fluence/particle/add neutron /analysis/file spenvis /analysis/fluence/unit cm2 /analysis/fluence/type OMNI /analysis/fluence/add 1 /analysis/fluence/add 4 /analysis/fluence/energy/mode log /analysis/fluence/energy/nbin 15 /analysis/fluence/energy/min 1.000E+00 keV /analysis/fluence/energy/max 1.000E+03 MeV /analysis/fluence/angle/default /analysis/niel/add 1 /analysis/niel/add 4 /analysis/niel/function cern /analysis/niel/unit rad

SPENVIS generates a text macro file for Geant4/MULASSIS

> Note actual aspect ratio of geometry is 100 and total number of particle histories followed is 100,000

SHIELDOSE2 and MULASSIS results for 450km, 61.8° LEO

MULASSIS will predict shielding effects for any shield/device material, and perform better treatment of secondaries

Geant4 Microdosimetry Tool (GEMAT)

- Objective & application:
 - 3D simulation of microdosimetry in parallelepiped and trapezoid geometries
- Functionality:
 - Facilities to determine:
 - Energy deposition spectra in depletion layer and funnel
 - Pathlength distribution function for complex micro-volumes may also be determined (for geantino particles)
 - Simultaneous energy deposition in different depletion regions (MBUs)
 - Uses General Particle Source
 - Intended for local and WWW operation (implemented under SPENVIS)
- Status
 - Interactive version implemented in prototype

Section 2 Geant4 Microdosimetry Tool (GEMAT)

- Microdosimetry without restrictions to parallelepipeds
- Depleted regions can have "L" and "U" shapes with rectangular or trapezoidal crosssections

QinetiQ

Section 3 Project SEPTIMESS

SEPTIMESS Space Energetic Particle Transport and Interaction Modelling for ESA Science Studies

Geant4 Space User Forum, ESTEC/ESA

Fan Lei Space Department, QinetiQ 20.01.2003

QinetiQ

Introduction

An ESA funded project (Contract No. 16339/02/NL/FM)

- ITT AO/1-3867/01/NL/FM "Energetic Particle Shielding and Interaction Software "
- QinetiQ as the prime contractor.
- Started at 01/09/02, and will last for 30 months.
- Five academic institutions, selected under a separated ESA ITT, are working in parallel, managed by QinetiQ.
- Activities will cover both Geant4 kernel developments and specific space applications

Main Study Objectives:

- Review the potential energetic particle radiation effects on payloads of future ESA missions, science missions in particular.
- Identify radiation transport analysis requirements to quantify effects and thereby reduce risks for these missions.
- Develop Geant4 based applications for quantifying the specific radiation effects.

Other Objectives:

- Support ESA and the European space science community through the provision of information and tools to quantify the risks to current and future missions from the natural radiation environment.
- Help expand the utilisation of Geant4 within the European space science community, and make Geant4 the preferred tool for space radiation effects analysis.
- To strengthen the collaboration between ESA and CERN, established in 1998, and between ESA and the Geant4 consortium.

Major Activities:

- Review of radiation effects to future ESA science missions:
 - Radiation environment
 - Radiation as background noise and potential damage to the scientific instruments
 - Methods for quantifying such effects
- Investigating new requirements in Geant4 for space applications and identify areas for further developments
- Software developments in both Geant4 kernel and space applications.

The List of Missions

- Mercury Orbiter
- Solar Orbiter
- INTEGRAL
- GAIA
- STEP
- LISA
- Eddington
- Darwin

- XEUS
- FIRST-Herschel
- Planck
- Rosetta
- NGST
- SMART-1
- Mars Express

Geant4 Developments:

- Implementation Process Biasing
- Improvement of Geant4 CAD/STEP file interface
- Implementation of hadronic cross-section based simulation
- Improvement of Geant4 atomic relaxation process
- Development of Geant4 statistical testing system

Possible Application Developments:

- Background study of the INTEGRAL mission
- Simulation of the proof-masses experiment on LISA
- Simulation of the proof-masses experiment on STEP
- Simulation of the MGS and MXS on BepiColumbo
- Simulation of the X-ray imaging spectrometer on SMART-1
- Analysis of low-energy electron and proton scattering in X-ray mirror shells, such as that of XEUS.

Possible Application Developments (con.):

- Study of X-ray CCD background, such as XMM.
- Simulation of the SREM detector system via CAD/STEP interface.
- Cosmic ray trajectory tracing and rigidity cut-off calculation.
- Cosmic ray atmospheric penetration and secondary radiation production.

Parallel Activities:

- Four institutes selected from proposals to ESA AO/1-4051/01/NL/FM:
 - Imperial College (Prof. Tim Sumner)
 - University of Southampton (Prof. Tony Dean)
 - University of Geneva (Prof. Alain Blondel)
 - INFN(Genova)/CERN (Dr. Maria Grazia Pia, Dr. Andreas Pfeiffer)

– One from unsolicited proposals:

• University of Bern (Prof. E. Fluckiger, Dr. L Desorgher)

Imperial College:

The transport of low-energy secondaries in experiments using proof-masses:

- Effects:
 - Charging
 - momentum transfer
 - thermal input
- Missions to be studied:
 - LISA
 - STEP

University of Southampton:

- INTEGRAL Background Studies:
 - To develop a Geant4 based Mass Model
 - Understanding of the background noise in all detector systems
 - Induced radioactivity in the germanium detector
 - Solar Flare effects
- XEUS Radiation Studies:
 - Background sources and potential radiation damage
 - tools/methods to quantify the effects.

University of Geneva:

Implementation of hadronic cross-sections in Geant4

- To identify the shortcomings in Geant4, in studies of impact of hadronic showers on materials.
- Compilation of c-s data: GSI,PSI, Los Alamos, former Soviet Union, and compare them with those collected in AMS and HARP
- Code development in Geant4: projectile energy range of 0.1 to 10 GeV.
- Validation and benchmarking.

INFN(Genova)/CERN:

- Design and development of a "standard" analysis toolkit/library based on the AIDA standard, to be used by all Geant4 applications within the SEPTIMESS project, including an example on its usage.
- Elicitation, specification and analysis of User Requirements for a general purpose tool for test and validation of Geant4 electromagnetic physics processes; object oriented analysis and design, development and testing.
- Refinement of Geant4 atomic relaxation package, including design iteration, implementation and test.

QinetiQ

University of Bern:

Geant4 cosmic ray applications:

- Propagation of cosmic rays through the Earth's magnetosphere:
 - Dynamic internal and external magnetospheric magnetic field models (IGRF/DGRF + Tsyganenko).
 - Improved tracking algorithm in magnetic fields
- Propagation of cosmic rays through the Earth's atmosphere.

Summary

Section 4 Summary

- Geant4 provides an environment to enable comprehensive simulation in 3D of radiation interaction processes from PeV to keV energies (and below for thermal neutrons, and EM processes)
- Several physics enhancements required for space as well as HEP have or are being addressed
- There is also a need to permit easy access to space radiation effects *engineering* tools based on detailed MC

Section 4 Summary

- SSAT, MULASSIS and GEMAT are a significant improvement over conventional engineering tools used in space radiation effects simulation
- The availability of MULASSIS over WWW increases general accessibility (user doesn't have to download Geant4), although the interactive version is available if required for user-dedicated application
- There is now an ongoing programme (SEPTIMESS) to help develop applications for Geant4 in space science missions

