Geant4 Simulation of Test-Mass Charging in the LISA Mission

Henrique Araújo Alex Howard Tim Sumner

Geant4 Space User's Forum, ESTEC, January 2003

Imperial College London

Test-Mass Charging II

Requirements (0.0001 – 0.1 Hz)

- Acceleration noise < $4x10^{-16}$ m/s²/Hz^{1/2}
- Positional accuracy < 1×10^{-9} m/Hz^{1/2}
- Test mass attitude < 4x10⁻⁷ rad/Hz^{1/2}

Lorentz Forces

$$\mathbf{a} = \frac{\overline{\dot{Q}} t}{m} \mathbf{v} \times \overline{\mathbf{B}} + \frac{\delta Q}{m} \mathbf{v} \times \overline{\mathbf{B}} + \frac{\overline{\dot{Q}} t}{m} \mathbf{v} \times \delta \mathbf{B}$$

Coulomb Forces

$$(\delta a)^2 = C_1 (\delta V_i)^2 + C_2 (\delta d_i)^2 + C_3 (\delta Q)^2$$

Geometry II

LISA Environment

1. Protons from solar flares

Localised in time

2. Galactic cosmic rays

Protons, Alphas

Isotropic flux

MeV – TeV energies

peak ~ 500 MeV/nucleon

Physics List

EM processes (LowE)

Electrons, Gammas, etc Atomic de-excitation Hadrons (no hFluorescence)

Hadronic processes

Elastic (LE+HE) Inelastic (LE+HE) Nuclear de-excitation Absorption/Annihilation Photonuclear (γ, e, μ) Neutrons (HP, LE, HE)

Decays Decay in flight (no RDM)

<u>Secondaries</u> Cuts: (250 eV), 1um - 5um Kill e- outside caging

Table 1. GEANT4 Physics List Emin E_{max} γ processes Photoelectric effect 100 GeV250 eV100 GeV**Rayleigh** scattering 250 eV100 GeVCompton scattering 250 eVGamma conversion 100 GeV250 eVPhotonuclear reaction 1000 PeV e^{\pm} processes Multiple scattering $100 {
m TeV}$ 100 eV100 GeVIonisation 250 eVBremsstrahlung 100 GeV250 eVPositron Annihilation 10 keV10 TeVElectronuclear reaction 1000 PeV μ^{\pm} processes Decay in flight Capture at rest Multiple scattering 100 eV100 TeVIonisation 1 keV 1000 PeVBremsstrahlung 1 keV 1000 PeV Pair production 1 keV 1000 PeV1 GeV Muon-nucleus reaction 1000 PeVhadron processes $(p/\bar{p}, n/\bar{n}, \alpha, {}^{2}\mathrm{H}, {}^{3}\mathrm{H}, \pi^{+}/\pi^{o}/\pi^{-}, K^{+}/K^{-}/K^{o}_{S}/K^{o}_{L})$ $\Lambda/\bar{\Lambda}, \Sigma^+/\bar{\Sigma}^+/\Sigma^-/\bar{\Sigma}^-, \Xi^o/\bar{\Xi}^o/\Xi^-/\bar{\Xi}^-, \Omega^-/\bar{\Omega}^-)$ Multiple scattering 100 TeV 100 eVIonisation 10 eV100 TeVElastic scattering ~ 0 1000 PeVInelastic scattering ~ 0 10 TeVAbsorption/annihil. at rest $(\pi^-, K^-, \bar{p}, \bar{n})$ Capture (n only)Decay in flight (short-lived)

GEANT4 on the Grid

- Extensive physics
- Wide primary energy range
- Low production cuts
- Large statistics required
- 1 CPU-Year for ~60 s of cosmic-ray exposure !

G4 Parallelisation !!!

"First significant use of UK particle physics Grid"

Sat 11 May 2002 16:18 BST. Posted by Steve Lloyd Alex Howard of Imperial College has made the first significant use of the UK particle physics Grid. Alex has submitted over a hundred jobs to 16 Grid nodes at Imperial and 8 Grid nodes at RAL running EDG middleware. *GRIDPP News*

Results II

Charge spectrum

The main contributions:

- proton/alpha stopping
 low energy electrons

• EM showers

nuclear reactions

EM processes I

Cuts

(~0.1 um)	1 um	2 um	5 um
250 eV	8.77 keV	30.7 keV	53.2 keV
52 +e /s	41 +e /s	40 +e/s	42 +e /s

Decreasing the production threshold from 10 keV (G3, G4EM) to 250 eV (G4LowE) leads to a ~20% increase of the charging rate!

EM processes II

LowE Threshold Lower than 250 eV ?

Materials Test Mass ≠ Electrodes

hLowElonisation

hFluorescence MeanExcEnergy ~ 800 eV

Cuts by region

Hadronic processes

Test-Mass Charging III

Assuming a charging rate of ~ 100 +e/s

Lorentz Forces

• Discharge rate: ~ 1 /day

Coulomb Forces

- Discharge rate: ~ 1 /day
- Displacement: < ~ 1 μm
- Voltage noise: < ~ 1 μ V/Hz^{1/2}
- Voltage imbalance: < 10 mV

These constraints are already much tighter than expected! Must continue simulation work...