

Space Applications at NASA/GSFC Using Geant4

Bryan Fodness, *SGT Inc* Robert Reed, *NASA/GSFC* Thomas Jordan, *EMPC* Jim Pickel, *PR&T* Paul Marshall, *Consultant* Ray Ladbury, *Orbital Science Corp*

Outline

- Introduction
- Angular Effects in Proton-Induced Single-Event Upsets
- Radiation Effects in Focal Plane Arrays
- Future Plans

Introduction

- Why do we think Geant4 is important to NASA?
 - Need one code with these features
 - Z > 4 particle interactions
 - Tracking of all secondaries
 - CAD interface
 - Easy to simulate sensitive volume for Single Event Effects (SEE)
- Current focus is SEE
 - Single Event Upsets (SEU) in logic devices
 - Single Event Transients (SET) in FPA
- Applications for TID and DD are under review

Angular Effects in Proton-Induced Single-Event Effects

Dominant mechanism for SEUs can be

 $1 < LET_c(MeV \bullet cm^2/mg) < 15$

- Elastic nuclear scattering
- Spallation reactions
- Some combination of both
- The incident proton energy will determine the dominant mechanism
- There is an angular dependence on the recoil direction
 - How does this affect an SOI/SOS device's SEU response?

Motivation

Peregrine Prescaler

SOS technology

Honeywell SRAM

SOI technology

Energy Dependence

- Spallation reaction products dominate the SEU response for proton energies > 50 MeV
- For 63 MeV protons:

Dominant mechanism for reactions for LETs > 3 MeV•cm²?

Proton Interactions with Target Nucleus-Elastic Scattering

- Recoil pathlength decreases as angle increases
- On average, more charge is deposited when proton is normal to larger surface of SV
- Angular dependence cannot be explained by nuclear elastic scattering

Proton Interactions with Target Nucleus-Spallation Reactions

- Recoil pathlength increases as angle increases
 - On average, more charge
 is deposited when proton is
 at some angle wrt to larger
 surface of SV
 - Spallation reaction is the mechanism

63 MeV Inelastic Recoils in Si

200 MeV Inelastic Recoils in Si

Energy Dependence

Conclusions (#1) and Future Plans

- Geant4 provided the physics simulation to uncover the basic mechanism for SEU in thin SOI/SOS technologies
- Plans to develop Geant4 SEE simulations
 - Incorporation of sensitive volume model
 - Incorporation of a charge collection model for proton induced events for complex transistor structures

- Goal is to predict Focal Plane Array (FPA) response to incident particles (protons, heavy ions, electrons) with high fidelity
 - Charge contamination on a pixel-by-pixel basis
- Source term is external radiation environment and transport through material surrounding FPA
 - L2 environment is predominantly galactic cosmic rays and solar particles

Note that secondaries and delta electrons are time coincident with primary and have limited range

Need Accurate Estimate of Transients

- Most primary and secondary particles can add to the noise floor (goal is 3-10 e⁻)
- Ionization energies for 5 μm HgCdTe and InSb detector material is on order of 1 eV/e-h pair
- Pathlengths are on order of 10 μm
 - Need only 3 to 10 e-h pairs/ μ m
 - Note that a 1 GeV proton in HgCdTe will create 1160 e-h pairs/µm

Transport Calculations

- Material Studies
 - Perform simulations for secondary environment

 $\begin{array}{c} \text{Material Region} \\ \text{Void Region} \\ \text{Void Region} \\ \text{CR Min Proton Spectrum} \\ \end{array}$

Contraction of the second s

Secondary Environment

Comparison of MCNPX and MuLaSSiS

Activation Studies

 Proton and neutron fluxes along with reaction cross-sections for spacecraft materials determine number of activated nuclei

Transient Analysis

- Supply location, trajectory, particle type, energy, and temporal information for every particle incident on FPA
- FPA model will use these inputs to calculate the transient rate for relevant environments, configurations and conditions

Conclusions (#2) and Future Efforts

- We are currently focused on determining the frequency of occurrence, magnitude, and pulse width distributions of radiation induced transients in infrared FPAs used on JWST
- Purpose of transport studies is to provide reliable estimates of transported primary and secondary environment as input to:
 - Contamination and activation analysis
 - Transient analysis