Modelling packaging effects on proton irradiation response of NMRC RadFETs **New GEANT4 simulations**

⁴ NMRC, University College Cork, Lee Maltings, Prospect Row, Cork, Ireland

Netherlands

Netherlands

Previous observations indicate RadFET response :

- may depend on proton energy
- varies with the package configuration.

In this work GEANT4 has been used to :

- Analyse the influence of the RadFET package on the proton response for different energies.
- Compare simulated and experimental results, using the ratio between the primary and secondary total ionising dose contributions for different packaging configurations.

Global scope:

 Learn how to predict component radiation behaviour in space by performing lab experiments and simulations.

Work description:

- Proton beams simulated according to PSI beam profiles for 10, 60 and 300 MeV.
- Employ the GEANT4 to quantify TID contribution from secondary particles generated in the RadFET package and Gate Oxide.

NMRC RadFET description

- MOSFET based dosimeter with optimised gate-oxide for increased radiation sensitivity.
- Induces charge trapping in the gate oxide and at Si/SiO₂ interface \rightarrow threshold voltage shift : $\Delta Vo = f(TD)$

Vo is measured by:

 applying a constant current (Ids) and measuring the source-drain voltage.

• Due to the constant current, the sourcedrain voltage increases as the irradiation induced charge build-up in the gate oxide increases.

Ids is typically of 10μA.

 Drain is shorted to gate and source is shorted to bulk.

NMRC RadFET description

There are four RadFET on each device.

400NM implanted gate oxide devices.

•

Exploded view

31 January, 2003

esa

...

31 January, 2003

Geant4 Physics Models and Data Sources:

Standard and Low energy

Electromagnetic: Ionisation; δ-ray production; Multiple scattering; Bremsstrahlung; Annihilation; Photoelectric effect; Gamma conversion; Compton scattering; Rayleigh scattering; Pair-production; Atomic relaxation.

Contraction of the second seco

Low and High Energy Hadronic Shower: Elastic and Inelastic interactions for different hadrons (protons, neutrons, tritons, deuterons,...) targeting particles from 10MeV up to some GeV.

Physics Models limitations:

These models do not allow secondary heavy ions tracking! 31 January, 2003 GEANT4 Space User' Forum

Simulation Scheme

- Geant Version: 4.4.0.3
- Cut Value: 1µm
- Source: 1mm²
- Device: 1mm²
- Source/Device dis.: d_{SD}=10cm
- Air
- Detector: RadfFET1' Gate Oxide
- Package conf:
 - Lid
 - No Lid

Simulated vs. PSI **Proton Beams**

31 January, 2003

LID Simulated Response to Proton Irradiation

31 January, 2003

NO LID Simulated Response to Proton Irradiation

Primary & Secondary TID ~ Function(Proton energy)

31 January, 2003

LID Configuration Primary and Secondary

NO LID Configuration Primary and Secondary

31 January, 2003

GEANT4 Space User' Forum

Package effect: Secondary Contribution to TID

contributions is higher than "LID" contributions is lower than "LID"

31 January, 2003

Package effect: Secondary Contribution to TID

 Secondary contribution - lower for the "No Lid" configuration 20, 60 and 300 MeV

Secondary Particles

Significant contributors

- Layers very close to the gate oxide, substrate and in the package lid
- Air layer (Package cavity) (60 and 300MeV)

tion of the secondary particles point of origin RadFET configuration with NO LID

 substrate/lid secondaries absorbed or stopped before the gate oxide.

(10 MeV)

31 January, 2003

Secondary Particles

Major contributors :

- Electrons
- Protons (not for "LID" 10 MeV)

secondary as a function of secondary particle

For 60 & 300 MeV "LID"

Light ions

- electrons by ionisation & photoelectric effect.
- protons & light ions by means of inelastic interactions.

Secondary Particles

** - -

Most energetic "LID":

Protons

(60 and 300 MeV)

Most energetic "NOLID" :

Protons

 (10, 60 and 300 MeV)

= = = = = = =

Experimental Results

31 January, 2003

GEANT4 Space User' Forum

30

TD_{NoLid/Lid}

20

15

15

V_{IRR} =0

= 83%

30

25

 $TD_{Nolid/Lid} = 67\%$

25

20

Comparing Experimental & Simulation Results

Comparing Experimental & Simulation Results

10 MeV Case

- Only protons > 15MeV cross the source/device air, LID
- And deposit energy in the gate oxide!

Conclusions

GEANT4 toolkit – simulate effects of secondary particles on RadFET TID response

- Gate Oxide, Field Oxide, Lid and Substrate main contributors to TID deposited in the RadFET gate oxide.
- Electrons & Protons major secondary particles contributors.
 However, light ions (deuterons & tritons) also contribute.
- Secondary heavy ions not considered by the models employed.
 But the TID contribution is believed to be marginal!
- The dominant cause of the discrepancies observed in the proton irradiation results obtained experimentally appear to be due to contribution of secondary particles generated in the Gate Oxide.

Further work

- Check for dose dependence simulating different sourcedevice distances (air);
- More realistic energy deposition calculations may be performed if oxide doping is included in the simulations;
- Radiation effects on components may benefit with the implementation of GEANT4 *Charge Recombination Models*

