LC-link by mec

Evaluation of the DARE65T platform: technology study, IP library development and Demonstrator ASIC design

VAN DE BURGWAL, Marcel GORBUNOV, Maxim BERTI, Laurent

IC-Link, customized solutions for innovative chip manufacturing

Tambara, Lucas

Part 2

Validation, characterization and irradiation testing of the DARE65T platform

<u>Marcel van de Burgwal</u>, El Hafed Boufouss, Bastien Vignon, Laurent Berti, Michael Kakoulin Imec.IC-link ASIC Design

Continuation of article presented on AMICSA 2022

ເງຍ

Outline

- DARE65T platform (imec)
- Test Vehicles (imec)
- Demonstrator (Frontgrade Gaisler)

Analog design kit DARE65T_ADK

Schematic RH rules checks

(script)

Layout RH rules checks (Calibre)

SET simulation environment (Striker & prober)

Customer analogue IP design

unec

Standard cell library DARE65T_CORE

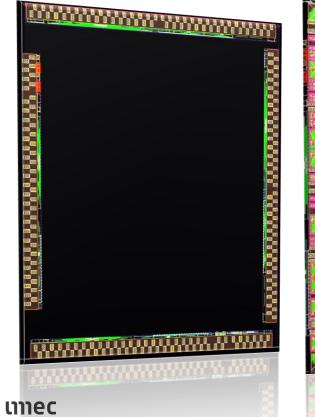
	Туре	#
	Non-SET hardened combinational cells	52
 Multi-VT (HVt, SVt, LVt) support 	SET hardened combinational cells - 25 MeV	7
digital/analogue on ton 9 design flow support	SET hardened combinational cells - 40 MeV	7
 digital/analogue-on-top & design flow support 	SET hardened combinational cells - 60 MeV	7
I2 track library – 0,2 um pitch	Non-SET hardened sequential cells	9
	SEU hardened sequential cells ²⁾	5
 SET & SEU hardened cells for clock & reset tree 	ANTENNA cells	I
 SET hardened combinational cells 	TIEH and TIEL	2
	Non-SEU hardened clock gating cells	I
 SEU hardened flipflops and latches (DICE) 	SEU hardened clock gating cells	3
Raw gate density ~344 kGates/mm ²	Filler cells	8
	Total	102

IO libraries (I)

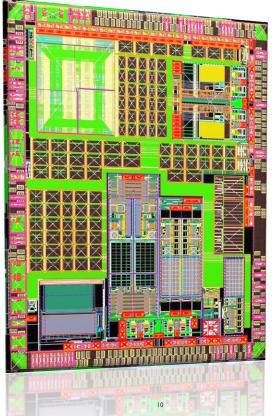
Library	Main features	
DARE65T_IO	Uni- and bidirectional LVCMOS cells	
	cold-spare feature	
	slew rate control	
	 programmable drive strength and pull up/down 	
	 supports 1.8/2.5V & 3.3 V supply voltage (maximum supply voltage 3.63V) 	
	ESD: 2 kV HBM	
	 Support cells (supply, fillers, corners, breakers) 	
DARE65T_LVDS	Transmitter and receiver IO cells	
	 based on 2.5 V overdrive 3.3 transistors 	
	 2.5 and 3.3 V voltage supply 	
	• up to 400 Mbps (200 MHz)	

Library	Main features	
DARE65T_SSTL	• SSTL18 cells - single ended and differential receiver and transmitter (JESD8-15A compliant)	
	• 1.8V \pm 5% supply voltage	
	 DDR2-800 support 	
	• SSTL15 cells - single ended and differential receiver and transmitter (JESD79-3F compliant)	
	• 1.5V \pm 5% supply voltage	
	Impedance calibration support	
	 DDR3-800 support 	

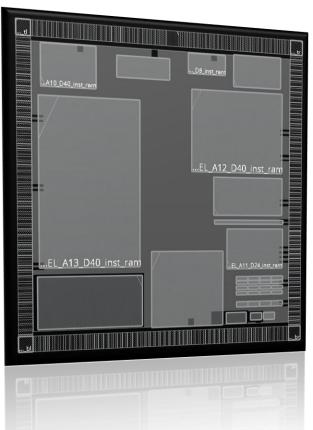
SRAMs


Library	Main features	
DARE65T_SPRAM	SPRAM compiler	
	• Highly configurable: 32 up to 32k rows, 8 up to 64 columns, byte lane WE control	
	 Optional guard ring generation 	
DARE65T_DPRAM	OPRAM hard macro instances	
	 5 configurations (512x40 up to 8192x40) 	
	 Custom SRAM bitcell: 1.9 x 2.75 μm2 	

Analogue IPs

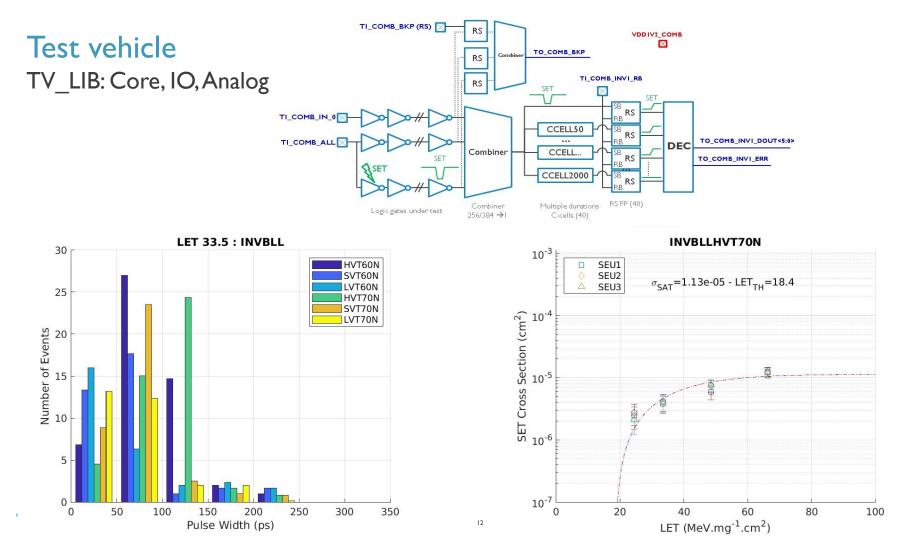

Library	Main features
DARE65T_PLL	25 - 100 MHz reference frequency
	• 6.25 - 1200 MHz output frequency
	 Supply voltage 1.2V
DARE65T_IVREF	 I.2V and 2.5 supply voltages
	0.6V output reference voltage
	Reference current output
	 Accuracy (before trimming) ± 2,5 %
DARE65T_ADC	I0-bit resolution
	Integrated temperature sensor
	 Supply voltage 1.2V
DARE65T_DDRPHY	DDR3.0 PHY with up to 600 Mbit/s data rate
	 Embedded DLL, impedance calibration and byte lane delay training support
	• 96 bit data, up to 8 ranks
	Integrated bump grid

Implementation on test vehicles


Technology devices

Core, IO & Analog IP

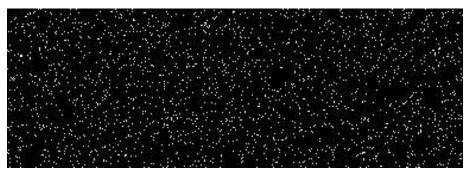
SRAM



Test vehicle TV_DEV:Technology study

- TID irradition until 300krad (SiO₂)
- Conclusions:
 - No significant effects for decap, diode, resistors
 - Up to 10% leakage variation for CORE transistors
 - Up to 6mV threshold shift for IO transistors
 - All variation as expected

Devi	ces	Test	TID effect @ 300krad(SiO ₂)
Decoupling cap		I _{LEAK}	<1%
Diode		I _{LEAK}	<1%
Bipolar		$\mathrm{V}_{\text{BE}}{=}f(I_{\text{E}})$	Bias current >10uA: marginal drift Bias current >100uA: no drift
	CORE	I _{ON}	<1%
NMOS		I _{LEAK}	Up to 10% for small gate length
		$ V_{TH} $	Up to 3mV for small gate length
INIVIOS	Ю	I _{ON}	<1%
		I _{LEAK}	<1%
		V _{TH}	Up to -5mV for small gate length
PMOS	CORE	I _{ON}	<1%
		I _{LEAK}	Up to -10% for small gate length
		$ V_{TH} $	<1%
	ю	I _{ON}	<1%
		I _{LEAK}	<1%
		$ V_{TH} $	Up to 6mV for small gate length
Resistor	RNP	R	<1%
	RPP	R	<1%
	RSNP	R	<1%
	RSPP	R	<1%


Note: TID effects less than 1% are close to the noise floor and are considered as "no effect"

Test vehicle

SRAM_TV: SPRAM, DPRAM

- TID no effects observed until 300 krad(SiO₂)
- SEE
 - No SEL observed
 - No SETs observed in periphery
 - Critical threshold ~1.5MeV/mg/cm²

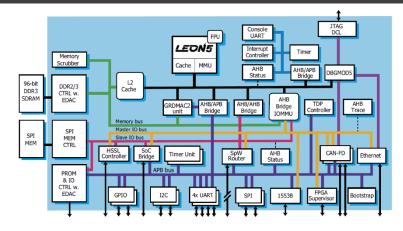
SEE - Static irradiation (all-0, all-1, checkerboard)

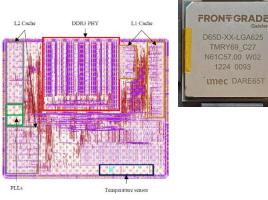
SEE - Dynamic irradiation: continuous read, correct, write iteration and capturing errors in realtime

13

DARE65T Library development

Conclusion

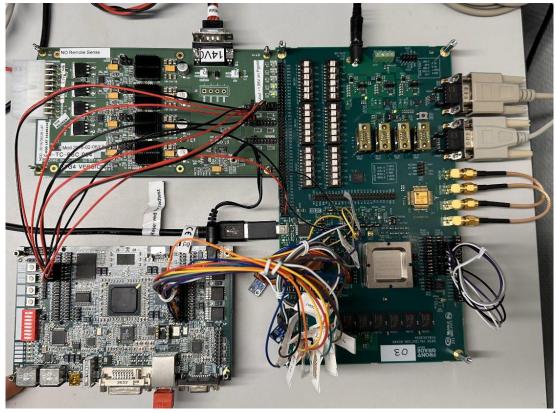

- Technology:
 - 65nm CMOS technology is hardly impacted by TID up to 300 krad(SiO₂)
 - No SEL observed during 3 test vehicle irradiations (up to 70 MeV/mg/cm²)
- Libraries:
 - DARE65T platform offers a complete analog/mixed signal library and design tools for Digital and Analog ASICs
 - Std cell, IOSRAM, SSTL, LVDS, PLL, current/voltage reference, ADC and DDR3 PHY
 - All libraries were electrically characterized and tested under irradiation (SEE and TID)
 - Design updates were made to resolve all IP weaknesses
 - DARE65T is ready for complex ASIC implementations



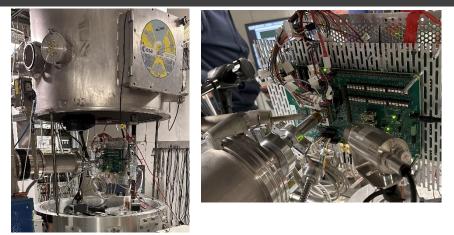
DARE65T's demonstrator ASIC developed in a collaboration between Imec and Frontgrade Gaisler.

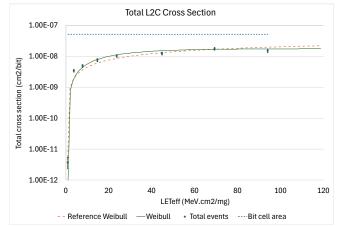
LEON5FT-based SoC:

- 1x LEON5FT processor core with:
 - Integer unit with 8-stage dual-issue pipeline.
 - 4x4 KiB instruction and 4x4 KiB data L1 caches connected to a 128-bit multi-layer bus.
 - Double-precision IEEE-754 floating point unit.
 - Memory Management Unit (MMU).
- 128 KiB L2 cache, 512-bit cache line, 2-ways.
- 96-bit DDR2/3 SDRAM with Reed-Solomon EDAC.
- SpaceWire router with 4 external links.
- High-speed serial link SpaceFibre controller (no on-chip Serializer/Deserializer transceiver).
- 1x 10/100/1000 Mbit Ethernet interface.
- Other interfaces, such as MIL-STD-1553B (1x), CAN-FD (2x, with CANOpen support), UART (4x), SPI (2x), I2C (2x), GPIOs, FPGA supervisor (GRSCRUB), SoC bridge, etc.
- Timers and watchdog.
- JTAG and Ethernet debug communication links.
- System frequency of 200 MHz.



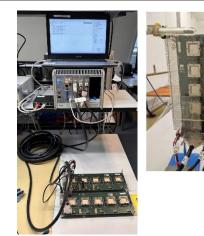
Work performed:

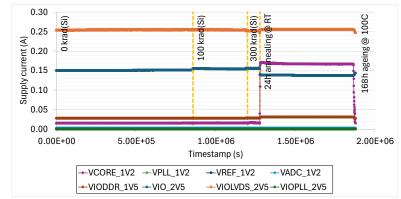

- Test platform development:
 - Validation board.
 - Test software.
- Functional validation of samples.
- Heavy ion SEE testing.
- TID testing.



Heavy ion SEE testing:

- RADEF/JYU, Finland.
- 0.94 ≤ LET (MeV·cm²/mg) ≤ 94.01.
- Fluences = $\sim 1 \times 10^7$ p/cm² per LET.
- Main results:
 - SEL immunity up to an LET of 94.1 MeV·cm²/mg (tested with elevated temperature - ~100 °C – and maximum supply voltages).
 - SEU results collected with the device operating in dynamic mode in agreement with reference data from the DARE65T library.
 - All upsets in the cache memories were handled by the built-in fault-tolerance features of the D65D, with no evidence of error build-up observed.
 - Functional results (SEFI and SDC) obtained through the execution of multiple software test cases aimed at exercising the majority of the hardware blocks of the D65D.
 - Data will be presented at RADECS 2025.





TID testing:

- ESA's ESTEC Co-60, The Netherlands.
- Dose rate:
 - 426 rad(SiO₂)/h from 0 to 100 krad(SiO₂).
 - 2170 rad(SiO₂)/h from 100 to 300 krad(SiO₂).
- Main results:
 - No TID-induced failures were observed in any test sample at any test step.
 - No evidence of time-dependent effects was observed in any sample after the accelerated ageing test step regardless of the biasing mode.
 - Results obtained reinforce the TID tolerance of 300 krad(SiO₂) of the DARE65T library.

Conclusion

- Evaluation of DARE65T was successful validated up to TRL 6 by Frontgrade Gaisler
- DARE65T offers standalone mixed signal libraries for Analog and Digital design flows
 - Robust against TID effects up to 300krad(SiO2)
 - SEE hardened cells
- For more info: <u>https://www.imeciclink.com/en/asic-services/asic-design/dare</u>

LC-Link by mec

Lucas Antunes Tambara (lucas.a.tambara@gaisler.com)

ar

THANK YOU!

Marcel van de Burgwal (marcel.vandeburgwal@imec.be)

Customized solutions for innovative chip manufacturing