

PROMISE, PROgrammable MIxed Signal ASIC Electronics Electrical Characterisation

BARAMILIS, Dimitrios (ISD); MAKRIS, Kostas (ISD); VASILIADIS, Nikolaos (ISD); DOKIANAKI, Olga (ISD); PAPADAS, Constantin (ISD); AYZAC, Philippe (TAS)

AMICSA JUNE 16 -18, 2025

- Architecture and features
- Design overview
- Electrical validation results
- Conclusions

Architecture and features

- 1 bit $\Sigma\Delta$ modulator
- Single clock domain
- Six (6) differential or single ended voltage inputs
- Simple serial output interface
- Selectable over-sampling ratios (OSR) allowing sampling rates up to 156 kSps
- Analogue input bandwidth from DC to 40 kHz

Implemented in XFAB's XH018 technology with 4 thin metals and two thick top metals

1 In1 Discrete Filter3

Design Overview

x_1

.5z⁻¹ 1-z⁻¹

Discrete Filter1

ADC model $\Sigma\Delta$ modulator

x_2

Quantizer

- Single clock domain
- 1 bit feedback DAC

0.2pF 0.7pF Vref 2 Vref 2 1b. /cm 4.9pF 0.9pF 2D 2D 1/2 0 17 Vin+ out+ 1D 0.5pF 0.7pF 0.7pF 2 2 1D out-Vin- ____1 2D 2D 2D 0.9pF 4.9pF Vcm Vcm 2 fb+ Vref Vref 0.2pF 0.7pF ADC model $\Sigma\Delta$ modulator

AMICSA 2025

►1 Out1

Design Overview

SINC CIC Decimator

- 4th order
- Very efficient implementation

Filter ID	Order	Normalized pass- band freq., <u>Fo</u>	Sampling frequency in kHz
HBF1	6	1/48	96
HBF2	10	1/24	48
HBF3	14	1/12	24
HBF4	22	1/6	12

Design Overview

Pilot Circuit Test Board

Pilot Circuit is the outcome of a European union's Horizon 2020 research and innovation program PROMISE (grant agreement No 870358)

Pilot Circuit Test Board under temperature forcing system

Design Overview

Dedicated ADC Test Board

Test bench with isolated DUT board

Performance

PSD for clock frequency 1.8 MHz, OSR = 512, V_{in} = 1.025 V

PSD for input sine wave 1Hz clock frequency 1.8 MHz, OSR = 2048

PSD for input sine wave 100Hz clock frequency 1.8 MHz, OSR = 2048

AMICSA 2025

Performance

	MCLK 1.8MHz OSR 512	MCLK 1.8MHz OSR 1024	MCLK 3.28MHz OSR 2048
DC input	RMS noise (μV)	RMS noise (µV)	RMS noise (μV)
0.125V	37.24	26.24	25.87
0.225V	43.77	26.12	25.29
0.325V	46.29	30.85	25.86
0.425V	37.8	31.37	24.62
0.525V	37.61	30.98	24.66
0.625V	36.62	32.63	23.41
0.725V	38.31	31.16	26.11
0.825V	38.26	33.03	24.51
0.925V	38.13	34.34	27.12
1.025V	41.34	32.62	28.13
1.125V	38.08	32.48	27.01
1.225V	38	35.22	26.73
1.325V	37.26	32.37	25.25
1.425V	41.47	32.36	26.13
1.525V	37.27	31.62	24.52
1.625V	36.58	32.26	24.78
1.725V	36.22	32.23	25.76
1.825V	36.2	31.25	24.24
1.925V	37.44	31.39	28.67
2.025V	37.52	30.99	26.53
2.125V	37.12	31.26	26.63
2.225V	37.46	35.73	26.6
2.325V	43.52	40.75	31.91
2.425V	58	56.04	37.73

RMS noise for differential configuration

Performance

AMICSA 2025

configuration

Total power dissipation

AMICSA 2025

- Performance is within expectation
- Target applications where interleaved operation with low frequency input signals is needed:
 - High accuracy instrumentation and measurement
 - Process control

