

Radhard electronics systems of the new CMS Timing Detector at CERN's Large Hadron Collider

J. Varela

PETsys Electronics & LIP/CERN

10th International Workshop on Analogue and Mixed-Signal Integrated Circuits for Space Applications

Lisbon, 16 -18 June 2025

- CERN's Large Hadron Collider & Experiments
- Electronics systems of the CMS Timing Detector
- Performance measurements
- Results on radiation tolerance

See presentation at this workshop: *"Radiation tolerance of the TOFHIR2 chip for the CMS/CERN timing detector" Edgar Albuquerque, PETsys Electronics SA* Wednesday, June 18, 12:00

The LHC proton collider

Underground circular tunnel

27 km circumference

100 m underground

4 caverns for experiments

Proton collisions at LHC

The Experiments

CMSDFTFCTOR STEEL RETURN YOKE : 14,000 tonnes 12.500 tonnes Total weight SILICON TRACKERS Overall diameter : 15.0 m Pixel (100x150 um) ~16m2~66M channels Microstrips (80x180 µm) ~200m2~9.6M channels Overall length : 28.7 m Magnetic field : 3.8 T SUPERCONDUCTING SOLENOID Niobium titanium coil carrying ~18,000A MUON CHAMBERS Barrel: 250 Drift Tube, 480 Resistive Plate Chambers Endcaps: 468 Cathode Strip. 432 Resistive Plate Chambers PRESHOWER Silicon strips~16m2~137.000 channels FORWARD CALORIMETER Steel + Quartz fibres ~ 2,000 Channels CRYSTAL ELECTROMAGNETIC CALORIMETER (ECAL) ~76,000 scintillating PbWO4crystals HADRON CALORIMETER (HCAL) Brass + Plastic scintillator ~7,000 channels

- General purpose detectors (ATLAS & CMS)
 - Large magnetic field (4 T, 4m diam)
 - Central tracker (charged particles)
 - Calorimeters (electrons, photons, hadrons)
 - Muon detectors
- Up to 100 millions electronics channels
 - On-detector electronics tolerant to radiation

Radhard Electronics CMS Timing Detector

The LHC timeline

Radiation challenge at HL-LHC **PETsys**

CMS radiation dose map, neutron equivalent fluence and particle rates for luminosities of 3000 fb⁻¹ (integrated) and 5 x 10³⁴ Hz/cm² (instantaneous)

Big challenge for the new front-end electronics systems.

Activation of materials becomes an issue for detector maintenance

Higher bandwidth & full granularity readout

Electronics

HL-LHC: CMS upgrades

New Timing Detector

New paradigm: Timing

- At HL-LHC up to **140-200** nearly-simultaneous collisions (**pileup**)
- Precision Timing Detectors with tens-of-ps resolution allows recovering current LHC level of vertex merge rate & track purity

PETsys

$$\sigma^{BTL}_{t} = \sigma^{clk}_{t} \oplus \sigma^{disc}_{t} \oplus \sigma^{elec}_{t} \oplus \sigma^{photo}_{t} \oplus \sigma^{DCR}_{t}$$

Digital TOFHiR Crystal & SiPM

- Purpose detect and time-tag valid MIP events with a time resolution <50ps average throughout the detector lifetime
- There are three main contributors to time resolution
 - Digital clock jitter
 - TOFHIR Time discritizations in the TDC & electronics noise
 - Crystal photo-statistics & dark counts
- Note (dark counts)
 - Long time exposure to high radiation levels damages SiPM
 - Thermally generated small current pulses at high rates (up to 20GHz)
 - Mitigated, to an extent, by lowering operating temperature (-45°C)
 - Indistinguishable from true photoelectrons generated by MIP events

Radhard Electronics CMS Timing Detector

Electronics systems of the CMS Timing Detector

Radhard Electronics CMS Timing Detector

J. Varela, AMICSA'25, Lisbon, 16-18 Jun2 2025

Radhard Electronics CMS Timing Detector

- Cylindrical detector with an active area of ~38 m², utilizes LYSO:Ce scintillating crystals coupled with silicon photomultipliers (SiPMs).
- The SiPM signals are processed by the TOFHIR2 ASIC
- The full BTL detector comprises 331,776 electronic channels.
- During HL-LHC operation, the detector will be exposed to high radiation levels, reaching 2×10¹⁴ n_{eq}/cm², leading to SiPM degradation and an increase in Dark Count Rate (DCR) from 0.5 MHz to 10-20 GHz.
- To mitigate dark noise, SiPMs will be cooled to -45°C and periodically annealed at 60°C, and TOFHIR2 implements DCR suppression circuitry

BTL front-end electronics

- BTL front-end electronics is organized in 432 Readout Units (RU)
 - 768 channels per RU
- Three types of boards:
 - FE Board (FE)
 - readout chip (TOFHIR2); LV and BV regulator (ALDO2)
 - Concentrator Card (CC)
 - Giga-Bit transceiver (IpGBT) and Versatile Link Plus (VTRx+)
 - **RAFAEL** clock fan-out chip
 - **GBT-SCA** for monitoring of low voltage, temperatures, SiPM bias currents
 - Power Converter Card (PCC)
 - DC/DC converter based on the **bPOL12** chip.

Seven radiation tolerant ASICs are required

Radhard Electronics CMS Timing Detector

J. Varela, AMICSA'25, Lisbon, 16-18 Jun2 2025

ASICs in BTL electronics

15

- **TOFHIR readout ASIC** provides the front-end digitization of sensor signals
- Data and control links implemented with IpGBT and VTRX+ chips
 - 10 Gbit/s optical data links and 2.6 Gbit/s optical control links
- Two GBT-SCA for slow control and monitoring
 - ADCs, I/O bits and I2C
- Distribution of clock and control links makes use of the RAFAEL fan-out ASIC
- ALDO2 ASIC provides low-voltage and SiPM biasvoltage regulation
- Power distribution implemented in PCC cards using DC-DC 12V converter bPOL12 ASIC

J. Varela, AMICSA'25, Lisbon, 16-18 Jun2 2025

16

- There is no access to the detector front-end during its lifetime
- Redundancy is required •

PETsys Electronics

- Reliability requirements for 10 years . lifetime:
 - 99% reliability at 95% CL
- All electronics boards have been • qualified through extensive thermal and power cycles in climatic chambers

Redundant control and readout

Front-end requirements

- Particle rate
 - Minimum Ionizing Particles (MIP) rate: 2.5 MHz/channel
 - Low energy hit rate: 5 MHz/channel
- Timing measurement
 - Two timing measurements per event
- Amplitude measurement
 - Charge integration and Time Over Threshold
- Dark counts and out-of-time pileup
 - Mitigate degradation of time resolution due to large SiPM dark count rate (DCR)
 - Cancel long LYSO signal tails to minimize pulse pile-up
 - Stabilize baseline to allow good timing with leading edge discrimination

Requirements implemented in the TOFHIR ASIC

• LYSO:Ce scintillating crystal bars

- fast scintillation rise time (< 100 ps)
- short decay time (~40 ns)
- high light yield (~40000 ph./MeV)
- tolerant to radiation
- Dual SiPM readout for each crystal bar
- o 25 μm cell size, mini Thermo Electric Coolers (TECs)
- neutron **fluence of 2×10¹⁴** n_{eq} cm⁻² expected by the end of HL-LHC (3000 fb⁻¹) → high level of **radiation-induced dark noise**

BTL Detector Module

• BTL sensor module: 16 crystal bars + SiPMs

- LYSO Crystal Arrays:
 - Scintillating light 30k photons/MeV

• Silicon Photomultipliers:

- Large dark current noise due to radiation damage (up to 10-20 GHz)
- SiPMs operated at -45°C (using TECs)

Readout ASIC: TOFHIR2

- Each Front-End board has 2 TOFHIRs
- Each TOFHIR has 32 independent channels
- Low-voltage and SiPM bias provide by ALDO ASIC
- ~20k chips in BTL detector

BTL sensor module

Front-End board

TOFHiR: Key specifications

- Target technology CMOS 130nm (radiation characterized)
- Radiation tolerance
 - Total Ionization Dose (TID) of up to 3 Mrad
 - Particle fluence of up to 2e14 neq/cm²
- Time resolution of 50ps average throughout the 10 years detector lifetime
 - Beginning-of-life (BoL) time resolution 30ps
 - End-of-life (EoL) time resolution 60ps
- SiPM dark noise suppression
- Static power dissipation of less than 15 mW per channel
- 32 channels

Features:

- Branches: T, E and Q
- Three leading edge discriminators
- Full current mode implementation
- Two TACs and one QAC sharing 40 MHz SAR ADC

TOFHIR2 characteristics				
Number of channels	32			
Technology	CMOS 130nm			
Voltage supply	1.2 V			
Reference voltage	Internal			
Radiation tolerance	Yes			
DCR noise filter	Yes			
Number of a nalog buffers	8			
TDC bin (ps)	10			
10-bit SAR ADC (MHz)	40			
I/O links	CLPS			
L1, L0 Trigger	Yes, Yes			
Maximum MIP rate/ch (MHz)	2.5			
Max low E rate/ch (MHz)	5			
Clock frequency (MHz)	160			

See presentation at this workshop: *"Radiation tolerance of the TOFHIR2 chip for the CMS/CERN timing detector" Edgar Albuquerque, PETsys Electronics SA* Wednesday, June 18, 12:00

PETsys Dark noise suppression with DLED

A delayed current pulse is subtracted from the original pulse (**DLED**) → mitigate noise / baseline fluctuations

- Preserves pulse rising edge
- Narrower pulse width lower pulse pile-up
- Converts the unipolar SiPM pulse into a bipolar pulse
- Reduced dark noise impact on time resolution

	SiPM ouput current	DLED output current
Slew rate (µA/ns)	135.9	9.93
Noise r.m.s (µA)	24.5	0.51
$\sigma_{\rm noise}$ / SR (ps)	180	52

Time resolution is improved by a factor 3.5

Radhard Electronics CMS Timing Detector

ALDO2 ASIC

Main objectives of the chip:

- SiPM bias voltage regulation
 - Finer segmentation and adjustable regulation
 - 16 channels for each independent bias line
 - Dark current measurement
- TOFHiR low voltage regulation
 - Filter noise on power supply
 - Improve thermal and load stability

Performance measurements

Radhard Electronics CMS Timing Detector

J. Varela, AMICSA'25, Lisbon, 16-18 Jun2 2025

Time resolution

Lab measurements with UV laser

Time resolution at BoL and EoL

Time resolution as a function of threshold in BoL and EoL

Time resolution as a function of rate

Detector module with TOFHIR2 excited with UV laser (pseudo-random test pulses)

Proton Test Beam

Results with TOFHIR2 on modules irradiated to 2E14 with 20 and 25 μm SiPMs at T=-35°C

PETsys

27

Solid state noise

- The contributions of the amplifier and TDC noise to the time resolution are estimated with laser light shining on two naked SiPMs (using a beam splitter)
- The channel time resolution is derived from the measured CTR
- Fit function: $\sigma_t = \sigma_{noise}/(dI/dt) \oplus \sigma_{TDC}$
- Fit result: $\sigma_{noise} = 0.360 \ \mu A$ and $\sigma_{TDC} = 12 \ ps.$
- Electronics noise contribution to time resolution:

$$\sigma_t^{elect} = \frac{\sigma_{noise} = 0.36 \,\mu A}{SR = 28.6 \,\mu A/ns} = 13 \,ps$$

TDC performance

TDC binning:

- Typical binning is 11 ps
 - 10 ps expected
- Low dispersion of binning
 - sigma=0.4 ps

TDC linearity:

- DNL < ± 0.5 LSB
- INL < ± 2 LSB

TDC resolution:

- Coincidences between TDC pairs used to cancel common jitter (e.g. clock jitter)
- TDC resolution is 13 ps
 - 5% dispersion

- Charge integration block has been validated
 - Good linearity in energy dependence on number of photoelectrons
 - Energy resolution ~2% in the range of pulse amplitude of interest

Radhard Electronics CMS Timing Detector

Radiation tolerance

X-Ray Irradiation Facility at CERN

TID tests done at the x-ray irradiation facility at CERN

- TOFHIR ASICs were irradiated up to 7 Mrad
- Max expected dose in BTL is 2.9 Mrad

Observables:

- Total current consumption
- Bandgap voltage
- DAC scan of DC voltages
- Front-end noise from threshold scan
- Shape of analog test pulse from disc. threshold scan
- TDC calibration in all TACs
- QDC calibration in all QACs

J. Varela, AMICSA'25, Lisbon, 16-18 Jun2 2025

PETsys

TID Radiation Test of TOFHIR2

- Negligible effects up to 7 Mrad in the frontend amplifiers, TDC and QDC.
- Emulating radiation and annealing cycles in one year operation
 - \rightarrow Effects up to 6% before annealing
 - \rightarrow No effects larger than 1% after annealing

J. Varela, AMICSA'25, Lisbon, 16-18 Jun2 2025

Tests of Single Event Effects (SEE) were performed at Heavy Moving frame Ion Facility (HIF) Louvain-la-Neuve

- Different ions covering a wide range of LET and ranges
- Different incident angle for intermediate LET
- Max beam flux is 1.4×10^4 ions/s.cm²

Observables:

- Cumulative SEU counter (SEU events)
- Synchronization counter (SET)
- Number of configuration bits flipped (non-corrected errors)

TOFHIR test board

Water based cooling plate

M/Q	lon	DUT energy [MeV]	Range [µm Si]	LET [MeV/(mg/cm²)]
3.25	¹³ C ⁴⁺	131	269.3	1.3
3.14	²² Ne ⁷ *	238	202.0	3.3
3.37	27 AI 8+	250	131.2	5.7
3.27	³⁶ Ar ¹¹⁺	353	114.0	9.9
3.31	⁵³ Cr ¹⁶⁺	505	105.5	16.1
3.22	⁵⁸ Ni ¹⁸⁺	582	100.5	20.4
3.35	⁸⁴ Kr ^{25*}	769	94.2	32.4
3.32	103Rh31+	957	87.3	46.1
3.54	¹²⁴ Xe ³⁵⁺	995	73.1	62.5

Vacuum chamber

Heavy Ion Facility (HIF)

SEE radiation test

• SEE protection in TOFHIR2:

- TMR on configuration bits (15'558 flip-flops), readout logic and clock/resync trees
- automatic correction of SEUs
- Measurements of Single Event Effects (SEE) were performed at Heavy Ion Facility (HIF)

Results extrapolated to HL-LHC:

- Cross-section of SEU errors
 - cross-section of corrected errors at HL-LHC is about $\sim 10^{-10}$ cm²/chip
 - ratio of uncorrected/corrected errors is of the order of 1/1000
- Rate of uncorrected SEE errors at HL-LHC:
 - charged particle rate in BTL ~ 10⁶ cm⁻² s⁻¹
 - estimated rate of uncorrected errors or synchronization losses is ~10⁻⁷ /chip/s.

Cross-section of corrected SEU errors

- Front-end electronics systems for the MTD/BTL detector of CMS have been successfully developed.
- Two dedicated rad tolerant ASICs have been developed specifically for this detector: the signal processing TOFHIR and the voltage regulator ALDO.
- Five other rad tolerant general-purpose ASICs designed at CERN have also been used. These ASIC can sustain radiation up to 150 Mrad (1.5 MGy) and 1.5×10^7 n_{eq}/cm²/s (1 MeV neutron equivalent fluence).
- Extensive measurement campaigns show that the average time resolution of 50 ps is met throughout the 10 years detector lifetime.
- Radiation tolerance of the BTL ASICs TOFHIR and ALDO have been validated for TID up to 7 Mrad (70 kGy) and fluence of 10⁶ n_{eq}/cm²/s.