A Radiation-Hardened Quad Power Switch with Fuse-Like Fault Shedding Characteristic

A Leading Provider of Smart, Connected and Secure Embedded Control Solutions

Dr. Sorin SPANOCHE

10th International Workshop on Analogue and Mixed-Signal Integrated Circuits for Space Applications (AMICSA), June 2025

- Introduction
- Fuse-type load shedding characteristics
- An integrated RLCL with fuse-type characteristics
- Applications
- Circuit characteristics during radiation tests
- Conclusions and future work

Introduction

• Need for load protection in space applications

- Importance of protecting all types of loads
- Traditional use of Latching Current Limiters (LCL) and Re-triggerable LCL (RLCL)

Challenges with loads featuring large and long inrush currents

- Issues with regular LCLs for heavy load start-up
- Setting trip current levels
 - Derating peak load inrush current
 - Trip time considerations

Effectiveness of protection

- Normal operating conditions vs. fault currents
- Energy dissipation concerns

Issues with Regular Latching Current Limiters

- Need for load protection in space applications
- Challenges with subsystems having large inrush currents
- Effectiveness of protection
- Limitations of regular LCLs
 - Fixed current and trip time settings
 - Need for derating current limit based on peak load inrush current
 - Can stress wire and other circuit elements integrity / fusing

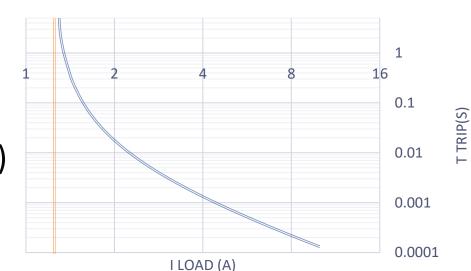
Traditional Load Protection Methods

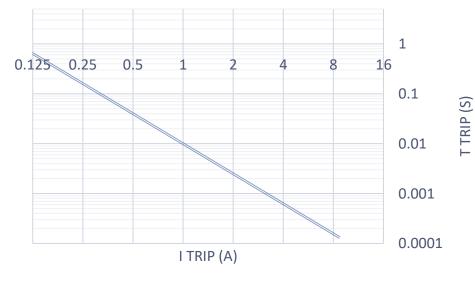
Space-qualified fuses and relays

- Used in power distribution across satellite subsystems
- Inexpensive, small and light
- Reliability can limit the application
- Accuracy is not great

One reliable alternative is

an electronic LCL / RLCL with adaptive trip time


Characteristics of Fuse-Type Load Shedding


- The physical mechanism is based on self heating up to melting temperature due to dissipated power
 - In a fixed thermal environment, the trip (melting) time is inversely proportional to the dissipated power
 - For a resistive circuit $t \sim 1/i^2$ so i^2t = constant

For a fixed load current

- If current is larger than the rated current:
 - $I_{fault} = I_{load} I_{rated}$
- The trip time is: $t_{trip} = K/I_{fault}^2$
- If current is variable

$$\int_{0}^{t_{trip}} i_{fault}^{2}(t)dt = K$$

© 2025 Microchip Technology Inc. and its subsidiaries

Energy Dissipation in Fault Conditions

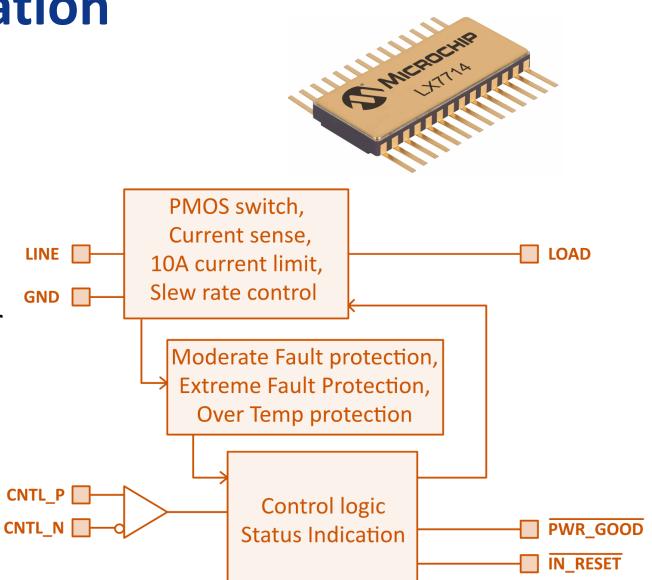
Trip time definition

• Defined by implicit equation if current is not constant

Energy dissipation in load

- Total energy dissipated due to fault current is constant
- Maximum energy dissipated in conductor or windings
- Examples of loads with large inrush currents
 - Loads with resistive and inductive components
 - Heaters, relays, motor drives

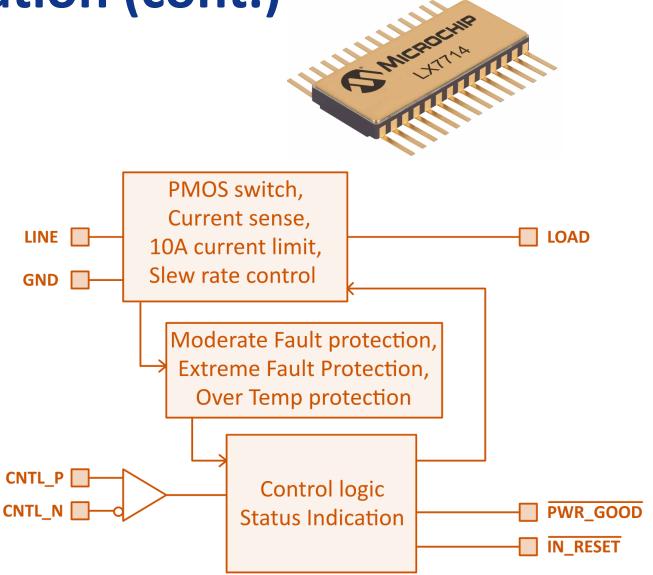
Efficient protection


• Fuse-like trip characteristic required

Design and Implementation

LX7714 Quad Resettable E-Fuse

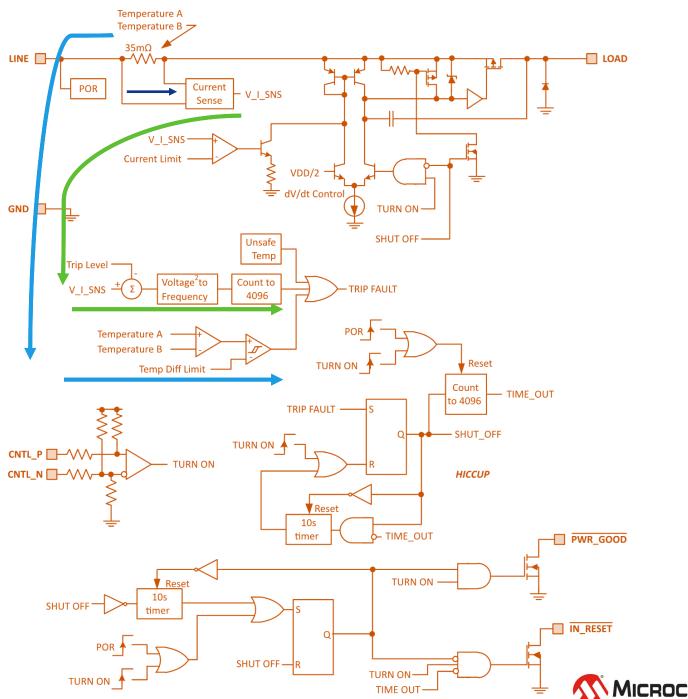
- Internal 2.5A or 1.25A maximum rated power switch
- Switches four independent voltages in the range 14V to 46V
- Handles 10A or 5A peak currents per switch safely
- Switch resistance is $250m\Omega$ (typ.) or $500m\Omega$ (max.)
- Internal output voltage rise time control
- Differential TTL input on/off control
- Power On, Off and Hiccup mode status

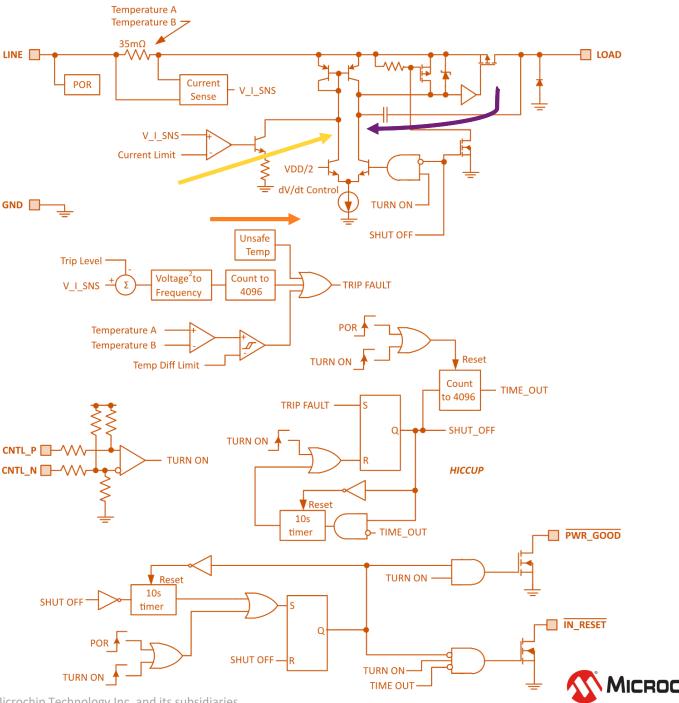

Webpage

Design and Implementation (cont.)

LX7714 Quad Resettable E-Fuse

- Hiccup mode for automatic fault handling
 - 10 second load removal on fault detection, 4096 retries
- Thermal shutdown for secondary protection
- Low resistance DIP power package
- Single event immunity
- Radiation Tolerant: 100 krad TID, 50k ELDRS, SEE immune
- 28-pin hermetic ceramic flatpack
- Pre-production samples available with evaluation board


<u>Webpage</u>


Functional Diagram

- Fuse-like characteristic
 - Line/Load current is amplified, limit is subtracted, resulting value is squared and integrated using a VCO + counter
 - Secondary faster protection for heavy load based on junction temperature difference between the sense element proximity and away as propagated
 - Equivalent to a limit on dissipated energy

Other Protection Mechanisms

- Comprehensive Protections
 for Channels
 - Guarantees protection of both load and protecting device
 - Implements turn on/off slew rate control
 - Current limit set at around 10A
 - Maximum junction temperature protection set at more than 150°C with some hysteresis

Trip Condition and Restart Mechanism

• Trip condition

$$\int_{0}^{t_{trip}} i_{fault}^{2}(t)dt = K \begin{cases} V_{i_{sns}} = a_{1}i_{sns}; \\ f_{VCO} = a_{2}(V_{i_{sns}} - V_{trip})^{2}; \ t_{trip} = N/a_{2}a_{1}^{2}i_{fault}^{2} \implies K = N/a_{2}a_{1}^{2} \\ t_{trip} = \frac{N}{f_{vco}} \end{cases}$$

Control of rated current

- V_{trip} offset controls the rated current
- K is controlled by changing the VCO gain a_2

Channel restart timing

- Restart timed by a longer timer
- Allows load and MOSFETs to cool down (duty cycle during fault / retry condition)

Maximum number of retries

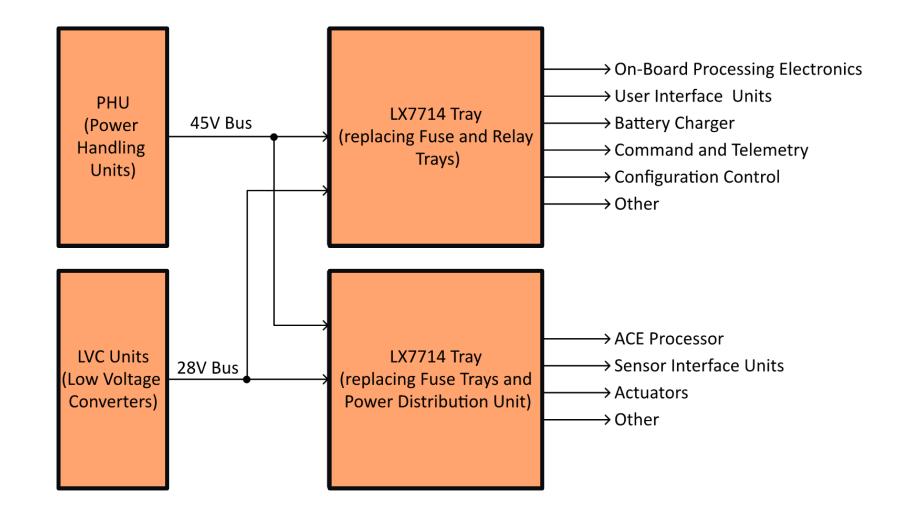
Avoids unnecessary retries to prevent load fault condition

Secondary Protection Details

Implementation of secondary protection

- Limits maximum instantaneous power dissipated in sense resistor and nearby power MOSFET
- Uses a limit comparator for junction temperature differences
- Temperature difference and power dissipation
 - Developed on die thermal resistance
 - Proportional to power dissipated in resistor and MOSFET
 - Reproductible and radiation hard since it is based on fundamental heat propagation physics and material constants of the substrate

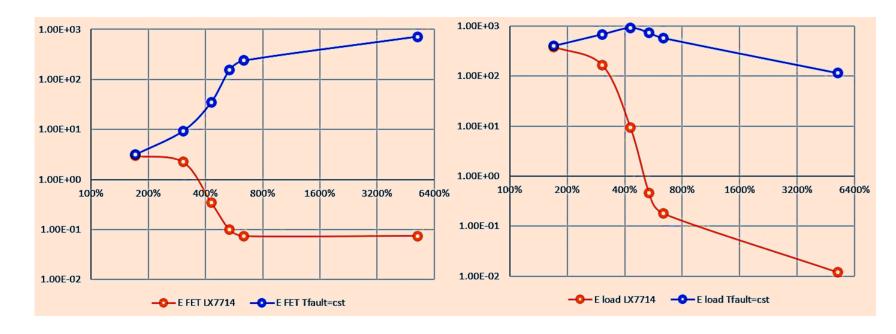
Safe operating region


• Turning off the device at a limit value for the temperature difference sets a limit for resistor and MOSFET safe operation below maximum power

Typical System Application

 Substitutes fuse and relay trays

 Used in satellite power distribution



Comparison with Classical RLCL

Comparison Setup

- Two applications sized similarly to the condition described in the introduction
- Measured data from LX7714 compared to calculated data representing classical RLCL

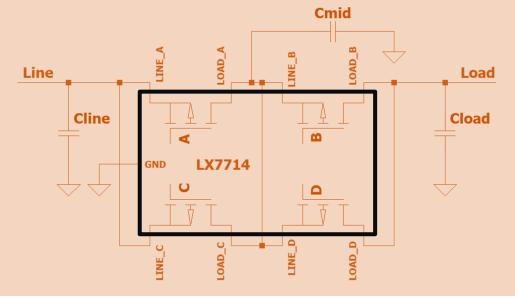
• **RLCL MOSFET Perspective**

- Medium advantage for LX7714 on medium overload condition
- four orders of magnitude advantage for LX7714 in heavy overload

• Load Circuit Dissipated Energy

- Medium advantage for LX7714 on medium overload condition
- four orders of magnitude advantage for LX7714 in heavy overload

Other Applications with Multiple Channels


Bidirectional isolation switches

- Useful to isolate line and load circuits in both directions
- Both switches are controlled using the same on/off signal

Redundant fault tolerant switch

- Uses all four switches from one LX7714 package
- Normally A and B are both controlled with the same on/off signal and C and D are off / cold spared
 - If any of A or B fail open, the parallel devices C or D are turned on
 - If any of A and B fail short, load can still be shut down by the still OK switch

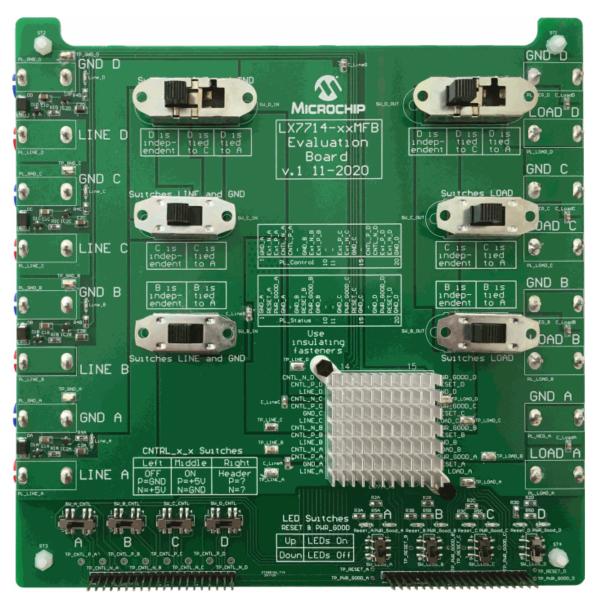
Radiation Test Results Overview

Parameter	Min.	Тур.	Max.	Pre TID	Post 100 krad	Units	
Switch voltage-drop			250	146 153	150 157	mV	
Load voltage in off state	0		500	41 42	45 69	mV	
Turn-off delay			150	17.4 18.3	12.8 16.4	μs	
Turn-on delay			100	28.5 28.8	29.4 34.4	μs	
Rising load slew rate	1	2.5	4	2.80 2.95	2.59 4.0	V/µs	
Falling load slew rate	-4	2.5	-1	-2.86 -2.69	-4.24 -2.8	V/µs	
Load current limit	7.5		12.5	8.7 8.9	8.6 8.9	А	
Trip current	2.5		3.5	2.93 3	2.92 3.02	A	
Overload trip time	0.5	1.5	2.5	1.95 2.48	2.14 2.74	S	

• Switch voltage drop

Small shift after irradiation

Load voltage


 Increases by less than 30 mV when switch is off and floating

• Turn-on delay

- Increased by 1 to $7\mu s$
- Turn off delay
 - Decreased by 1 to 5µs
- Trip current
 - Changes by less than 1%
- Overload trip time
 - System level performance

Support Tools for LX7714

LX7714 Evaluation Board

- Supports ZIF socket or directly soldered LX7714
- Switches and status LEDs simplify standalone operation
- Power switches allow for easy channel customization

Conclusions and Future Work

Integrated RLCL implementation

- Fuse-like load shedding characteristics
- Natural fit with safe operating area for pass transistor

Advantages of protection scheme

- Better solution compared to traditional LCL/RLCL
- Effective for loads with large or long in-rush currents

Possible future developments

 Identify other types of load shedding that are useful for current space electronics

All

Enter keyword, item, model or part #

Radiation-Hardened Mixed-Signal ICs

Meet Demanding Weight and Space Requirements

Building on nearly six decades of innovation and expertise in space electronics, our portfolio of radiation-hardened Integrated Circuits (ICs) continues to expand with the inclusion of advanced mixed-signal solutions. Each of these products integrates commonly used satellite functions into a single, space-saving device. This results in a simplified solution that can meet demanding weight and space requirements while increasing reliability in your designs.

MICROCHIP

Our Solutions Offer:

- High performance in satellites of various types operating in a range of orbits
- Radiation-hardened by design
- Significant reduction in BOM IC count for increased reliability, reduced board space and reduced weight
- Designs derived from development expertise with circuit elements that have over 15 years of flight heritage
- Custom options for your specific application needs

Download our brochure to learn more about mixed-signal solutions for space.

Download Space Brochure

Microchip 🗸

ΞØ

Q

Thank You!

Radiation-Hardened Mixed-Signal ICs | Microchip Technology

