

Recte feet Ltd

A comparison of heavy ion and laser SEE test data for analogue and digital parts

Richard Sharp, Annika Häkkinen, Chris Chong, Aditi Katoch and Joe Rushton

Radtest Ltd proprietary

Radtest Ltd

Radteøt 🗤

- The Radtest story began in December 2013, originally as part of Aeroflex, then Cobham and since 2020 an independent company
 - Located at Harwell, Oxfordshire in the heart of the UK space hub
 - Core service offering of radiation testing
 - Key product: SEREEL2 laser SEE test systems
 - Sectors covered:
 - Space
 - Nuclear
 - High-energy physics
 - Medical
 - Industrial

Radteøt 🗤

SEREEL2 and SCIF

- In October 2023, the UK Space Agency awarded a grant to Radtest, one of fourteen under the Space Clusters Infrastructure Fund (SCIF)
- The grant covered the manufacture, installation and commissioning of a SPA+TPA SEREEL2 system at Harwell
- The aim of the grant is to provide a system for rental for commercial testing purposes and to act as a development testbed for improvements to the capabilities of SEREEL2, including to the SEESIM operating software
- Included was funding for comparative testing of digital and analogue test vehicles, using SEREEL2 and a heavy ion facility

SEREEL2 example configuration

RadteØt Lid

Analogue test vehicle

- LM124 quad op amp, TI
- Widely used as a benchmark device for pulsed laser testing, enabling easy comparison with results from elsewhere
- Familiar to us from previous testing on SEREEL2
- One quarter shown here from IR camera image, with key transistors identified

RadteØt Lod

Analogue test vehicle

- LM124 quad op amp, TI
- Widely used as a benchmark device for pulsed laser testing, enabling easy comparison with results from elsewhere
- Familiar to us from previous testing on SEREEL2
- One quarter shown here from IR camera image, with key transistors identified

Analogue test vehicle – laser results

- Pulse energy values of 1 -6 nJ, 1064nm, 200fs, 50x lens (NA 0.65), 2µm step size
- Many SETs observed
- Four categories of pulse shape have been associated with distinct transistor locations
- Cross-section curves derived

Radte Øt Lid

- Test data obtained from HIF at UCL using the 9.3 MeV/nucleon cocktail
- LET values of 1.3, 3.3, 9.9, 32.4 and 62.5 MeV/mg/cm²
- Four categories of pulse shape observed
- Cross-section curves derived

Analogue test vehicle - conclusions

С A 3.0-Xe Хе Q18 Q2,Q3,Q4,Q5,Q20 2.5 6 2.0 5 Voltage (V) 4 1.5 Voltage (V) з. 1.0 2 0.5 (PMA) THE ALC: UNK 0.0 n -0.5 10 0 5 15 30 35 -5 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 20 25 40 Time (us) Time (us) В D Xe Xe - Q11,Q19 Q13,Q14 Q9 2. -2 Voltage1 (V) Voltage (V) 0 -4 -2 --6 -8 -6 -10 10 20 70 80 0 30 50 60 40 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 Time (us) Time (us)

Analogue test vehicle - conclusions

Heavy Ion SET cross section -Q13,Q14 for different pulse types (LM124) Q2-Q5,Q20 SET cross section for all pulse types 0.001 SET cross section (cm^2) 1E-4 1E-5 1E-6 1E-7 10 20 30 0 40 50 60 70 LET (MeV*cm2/mg)

Analogue test vehicle - conclusions

- Excellent agreement between laser and heavy ion results
- Similar effects observed, in terms of pulse shapes, magnitude and relative abundance
- Similar cross-section curves
- Saturation and threshold values very similar

Radte Øt Lid

Digital test vehicle

Radteøt 🗤

- 23LCV512 serial SPI SRAM, Microchip
- Familiar as previously used for development of a separate test system (student project)
- Front side exposure used for both laser and heavy ion testing

Digital test vehicle – laser results

RadteØt Ltd

- Pulse energy values of 1 6 nJ, 1064nm, 200fs, 50x lens (NA 0.65), 2μm step size
- Front side lasing showed sensitivity only on one edge (blue), probably due to metallisation
- No SEU but many 4-bit MBU observed
- No latch-up observed
- Cross-section curves derived

- Test data obtained from HIF at UCL using the 9.3 MeV/nucleon cocktail
- LET values of 1.3, 3.3 and 9.9 MeV/mg/cm²
- High sensitivity to latch-up
- Many SEU but only a few 2- and 3-bit MBU observed
- Cross-section curves derived

Digital test vehicle - conclusions

Heavy Ion SEU cross section (23LCV512) 0.1 SEU cross section (cm^2) 0.01 0.001 1E-4 2 8 10 6 0 Λ LET (MeV*cm2/mg)

Digital test vehicle - conclusions

Pulsed Laser SEU cross section (23LCV512) SEU cross section (cm^2) IE-2 1E-7 · 2 3 5 6 4 7 Pulse energy (nJ)

- Qualitatively similar effects observed, although predominantly SEU with heavy ions and MBU with laser
- No laser effects observed in memory cell area, believed to be due to extent of metallisation above sensitive regions
- Many MBU observed in the output region
- Cross-section curves of similar shape but significantly different scale
- Laser testing from the back would enable data from the memory cells also to be gathered

Summary

- Facility: the SCIF grant has enabled a SPA+TPA SEREEL2 system to be set up at Radtest's Harwell site and is now available for use
- Benchmarking: comparative testing of analogue and digital samples has been carried out, using both SEREEL2 and heavy ions
- Analogue: close agreement
- Digital: agreement in one area of the DUT, lasing from the back required for assessment in the memory cell areas
- Open day: planned for Q4 2024, date TBC watch for an announcement

Radtest

Radtest Ltd www.radtest.co.uk info@radtest.co.uk

Phone: +44-1235-436620 HQ Building, Thomson Avenue Harwell, Oxfordshire, OX11 0GD, United Kingdom