

Investigating Energetic Heavy Ions in The Solar System with the Juice Mission

Marco Pinto Internal Research Fellow TEC-QEC

02/09/2024

ESA UNCLASSIFIED - For ESA Official Use Only

→ THE EUROPEAN SPACE AGENCY

JUpiter ICy moons Explorer (JUICE)

📲 🚍 🚥 🕂 📲 🔚 🔚 🔚 🔚 📲 🔚 🔤 🐜 🚺 🕌 🖬 📰 🖛 🖉

RADiation hard Electron Monitor (RADEM)

Requirements:

- □ Measure electron flux
- Spectral range 300 keV 40 MeV
- Peak Flux 10⁹ e/cm²/s
- Electron Directional Distribution
- □ Measure proton flux
- Spectral range 5 MeV- 250 MeV
- Peak Flux 10⁸ p/cm²/s

Measure Heavy Ion population

- From Helium to Oxygen
- Dose determination
- Low mass (~3 kg currently)Low power

Detectors

Front-end electronics performed by an IDE3446 ASIC cesa

- □ HIDH connected to Low-Gain channels
- One programmable Threshold
- Low (LGLT) 10-bit DAC [~0.1-~26 pC]
- Other sensors connected to High-Gain channels
 Two Programmable Thresholds:
- Low (HGLT) 10-bit DAC [~0.1-~100 fC]
- High (HGHT) 10-bit DAC [~10-~1000 fC]

- Global gain adjustable (10-bit DAC)
- Coincidence time adjustable (10-bit DAC)
- Temperature dependence

Signal Processing

Pulse height analysis is not performed Differentiating DAC scans can overcome this limitation Not feasible in flight

💳 🔜 📲 🚍 💳 🕂 📲 🧮 🚍 📲 📲 🚝 🚝 ன 🕼 🌬 📲 层 🛶 🕼 🕨 🐜 📲 👫 🚍 🛨

Calibration Plan

Detector

- Breadboard model
- Diode from the same batch
- **-80V**
- Same front-end (ASIC)

Laser Tests

- $\circ~$ Energies encompass the ASIC dynamic range
- Fast (tuneable rate)
- $\circ~$ Physically not the same as heavy ions

Beam tests at RADEF

- Energy calibration with Heavy Ions
- Slow and expensive
- Limited configuration space characterization

Comparison done before with a PIPs diode

Laser Testing

Test conditions

Single Photon Absorption
Polished diode (done at ESTEC)

Physical Tests

- \circ Energy response
- Deadtime
- GLOBAL_GAIN characterization
- Temperature dependence

Laser Test – Energy scan

Laser Test – Energy scan

GLOBAL_GAIN can be tuned

- Tests done with several GLOBAL_GAIN Values and laser energies
- □ Threshold varies linearly

11

Laser Test – GLOBAL_GAIN calibration

- Min ~4.32 DAC/pJ
- Max ~12.74 DAC/pJ

→ THE EUROPEAN SPACE AGENCY

Deadtime

Tested response to increase of flux

- □ Laser energy 50 pJ
- □ Freq. from 1 kHz to 490 kHz

□ Several GLOBAL_GAIN and Coincidence time (MCT) tested

✓ No differences found

Only exception at MCT = 0 limited at \sim 5k counts/s

1000

13

Temperature dependence

- $\hfill\square$ Temperatures changed from 10 to 50 °C
- Peltier used to increase temperature
- Reversed polarity to decrease temperature
- nitrogen to stop condensation

 Model including Boltzmann distribution was fitted to the data
 Model in good agreement with the data!

→ THE EUROPEAN SPACE AGENCY

Comparison to Heavy Ions

Energy (MeV/nucl.)	Ion Species	Total Energy (MeV)	Estimated Depos. Energy* (MeV)	
			Top Sensor	Bottom Sensor
		1000	(D1)	(D2)
	Kr	1826	1826	0
22.0	Fe	1254	1254	0
	0	374	95	133
16.3	Ar	657	657	0

- □ Several ion species tested
- □ Linear relationship between energy and threshold
- Technical issues made it in-practical to compare to the laser results
- Re-run would be nice

Conclusions

Full parametric characterization of the HIDH breadboard performed including:

Energy

Gain

Coincidence time

Temperature

Threshold behaves linearly up to ~ 800 DAC units

Gain can be adjusted from 4.32 to 12.72 DAC/pJ

Detector does not saturate up to ~490kHz.

Showed that temperature dependence can be modelled by a Boltzmann distribution

Lasers are cool! It would take us 1000h with heavy ions.

🗕 🔜 📲 🚍 💶 🛶 📲 🔚 🔚 🔚 🔚 🔚 📥 🚱 🛌 📲 🗮 🔤 🖬 👘 🖓

Thomas Borel

- Hajdas Wojtek
- Michele Muschitiello
- **Florian Krimmel**
- Alessandra Costantino
- **Olivier Witasse**
- Anastasia Pesce