
Review and Development 
of Nuclear-Nuclear 
Interaction Physics Models 
for Geant4

Contract 17191/03/NL/LvH
Pete Truscott & Fan Lei
12 May 2004
QinetiQ Ltd, Farnborough, UK



2

Outline

• Project overview

• Background and requirements

• Geant4

• Physics models implemented

• Results and comparison with experiment and other models

• Summary



3

Project Overview
Ion-Nuclear Models for Analysis of Radiation Shielding and Effects

• WP 1 Review
– Review requirements, models and available data

– Summarise in Technical Note #1 & URD

• WP2 Implementation
– SSD, SUM

• WP3 Validation
– SVVP, Technical Note #2

• WP4 Software maintenance
– Maintained for 2 year period

– Modifications timed to coincide with major Geant4 releases during this period
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Background and Requirements
• Species and energy range of 

source particles
– GCR:

• Very wide range in species, with 
noticeable dips after He and Fe

• Typical energy range of 
concern: 10’s MeV/A - 100’s 
GeV/A, although mean energy 
is several hundred MeV/A.

– Solar particle events 10’s MeV/A to ~1 GeV/A:

• Impulsive, short-term events associated with solar flares 
have greater fraction of heavy particles

• CMEs produce gradual events that are proton-rich and last 
longer
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Background and Requirements
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Target materials involved

• Man-made / transported materials

– Metal alloys of Al, Ti, Fe, Mg, Be

– plastics and composites (incl glass, B and C-fibre)

– oxidants and fuels (e.g. UDMH + NOx)

– deliberate shielding and mass balance (polyethene, water, W, Ta, Cu, 
Fe)

– fissionable materials (namely uranium isotopes) if nuclear-powered 
propulsion used

– crew consumables / life support
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Martian and Lunar Soils
• Soil model based on previous NASA Langley studies:

Lunar Mars Mars

Langley model Rep. Regolith Basalt

– O 61.5% 40.4% 61.3%

– Si 19.3% 14.1% 19.2%

– Al 7.5% 3.3%

– Fe 6.1% 4.4% 6.1%

– Mg 5.5% 39.2% 6.2%

– Ca 1.9% 4.1%
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Regime Model Application

Hadron-nucleon
or hadron-nuclear

Parameterised

Parton-string (>5GeV)

Cascade (10MeV-10GeV)

QMD models

Pre-compound (2-100 MeV)

Low-energy neutron
(thermal - 20 MeV)

Isotope production

Cosmic ray
nuclei and
secondaries Trapped protons

and secondaries

Secondary neutrons, including
atmospheric/planetary albedo neutrons

Induced radioactive background
calculations

Nuclear
de-excitation

Evaporation (A>16)

Fermi break-up (A≤16)

Fission (A≥65)

Photo-evaporation (ENSDF)

Treatment for seondaries from cosmic
ray nuclei and trapped protons, esp.
important in calculation of single event
effects (microdosimetry)

Radioactive decay (ENSDF)
Induced and natural radioactive
backgrounds

Multi-fragmentation

Very detailed model 
∴ time consuming

At the time could 
only treat hadron-
nuclear interactions 
(Light-ion Binary 
Cascade code 
released Dec 03)

Any new models have to complement 

and not duplicate other hadronics

development in the Geant4 

Collaboration.

Work on extending QGS to 
treat nuclear-nuclear
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Geant4 Inelastic Cross-Sections
Total cross-section models based on parametric fits:
• proton-nuclear & neutron-nuclear interactions
• Tripathi et al’s general algorithm for nuclear-nuclear
• Others introduced in December

Total cross-section models allow 
rapid determination of mean-free 
paths, but cannot determine 
momentum change and secondary 
particle production

Final state models to 
determine exact interaction 
process and secondary 
particle production
• Binary Cascade
• Classical Cascade
• Pre-equilibrium

Alternative model of Tripathi

implemented for more accurate 

treatment of nuclear-nuclear collisions 

of lig
ht projectiles and/or targets

Abrasion (macroscopic) and ablation 

model, and electromagnetic 

dissociation model
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Final State - NASA NUCFRG2 Abrasion
• Macroscopic model for nuclear-nuclear interaction, 

rather than microscopic as in Binary and 
Classical Cascade, or JQMD

• Interaction region determined from
geometric arguments

• Nuclear density assumed constant

• Number of “participants” in the overlap 
region based on approximation for
nucleon mean-free path and maximum
chord-length in the overlap region

• NASA model follows this with ablation process - excitation energy from:

– excess surface area of nuclear fragments

– average energy transferred to nucleons which do not escape the 
nuclear fragment
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G4WilsonAbrasionModel
• In principle the abrasion model should provide advantages in 

speed over microscopic simulation

• Replace ablation process with Geant4 de-excitation models 
(evaporation, Fermi break-up, multi-fragmentation, and 
photo-evaporation) … later reconsidered

• Abraded nucleons from projected and target nucleus treated, 
as well as de-excitation of projectile and target pre-
fragments

• By-product of implementation is a Geant4 class for 
microscopic model to account for excitation as a result of 
nuclear asphericity
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16O-Cu 2100 MeV/nuc
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40Ar-C 1650 MeV/nuc
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Execution Time

• G4WilsonAbrasionModel offers improved simulation speed 
compared with Binary Cascade model

• Simulation of 100,000 ions incident on 5mm 12C:

Projectile G4WilsonAbrasionModel G4BinaryLightIonReaction

40Ar (2632 AMeV) 107s 577s

12C (8773 AMeV) 46s 196s
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Nuclear EM Dissociation

• Liberation of nucleons or nuclear fragments as a result of 
electromagnetic field, rather than the strong nuclear force

• Important for relativistic nuclear-nuclear interaction, e.g. for 
3.7GeV/nucleon 28Si projectiles in Ag, ED accounts for ~25% 
of the nuclear interaction events

• NASA model used in HZEFRG and NUCFRG2 predict ED 
events for 1st and 2nd moments of electric field and cross-
sections for giant dipole / quadrupole resonances (watch out 
for errors though)
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Nuclear EM Dissociation
• The G4EMDissociation model is an implementation of the 

NUCFRG2 physics

• Applied for dissociation of projectile and target

• Note however that other nuclear fragments can also be 
produced but difficulty is getting cross-sections for those 
fragment production to integrate over virtual photon 
spectrum
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G4EMDissociation
28Si(14.5GeV/n,107Ag) →→→→ 27Al + p

G4EMDissociation Experiment

216 ± 2 mb 165±24 mb

128 ±33 mb

16O(200GeV/n, 107Ag) →→→→ 15N + p
G4EMDissociation Experiment

331 ±2 mb 293 ±39 mb

342 ±22 mb

24Mg(3.7GeV/n, 107Ag) →→→→ 23Na + p
G4EMDissociation Experiment

124±2 mb 154 ± 31 mb
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IONMARSE

• Classes implemented:
– G4TripathiLightCrossSection: improved total inelastic cross-section 

model for protons and light nuclear projectiles/target

– G4ESAGeneralNNInelasticCrossSection: General cross-section model 
selector for proton/nuclear-nuclear interactions

– G4WilsonAbrasionModel : Abrasion (macroscopic) interaction model

– G4WilsonAblationModel: Ablation+evaporation model as an 
alternative to standard Geant4 de-excitation (evaporation / break-up 
/ fission)

– G4EMDissociation: Electromagnetic dissociation model
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Experimental Data for N-N Interactions

• Large amount of data for heavy target nuclei such as silver, 
gold, lead, bismuth and depleted uranium - not as relevant 
to space

• Some information on 
double differential cross-
sections for lighter nuclei, 
including the sources of 
data used by Yariv and 
Fraenkel

• Data being used to validate new models

NoNoNoNo ReferenceReferenceReferenceReference Source particlesSource particlesSource particlesSource particles Target materialTarget materialTarget materialTarget material Quantities measuredQuantities measuredQuantities measuredQuantities measured

1 T Kato, et al, “Systematic analysis of neutron yields from thick targets
bombarded by heavy ions and protons with moving source model,”
Nucl Instrum Meth Phys Res, A480A480A480A480, 571-590, 2002.

C @ 100, 180, and 400
MeV/nucleon

Ar @ 400 MeV/nucleon

Fe @ 400 MeV/nucleon

Xe @ 400 MeV/nucleon

C, Al, Cu, Pb DDCS for neutrons

2 H Sato et al, JAERI Conference 2000-005, 261, Proceedings of the 1999
Symposium on Nuclear Data, 18-19 November 1999, Jaeri, Japan,
2000.

C @ 135 MeV/nucleon C, Al, Cu, Pb DDCS

3 T Kurosawa  et al, " Neutron yields from thick C, Al, Cu, and Pb targets
bombarded by 400 MeV/nucleon Ar, Fe, Xe and 800 MeV/nucleon Si
ions," Phys Rev, C62C62C62C62, 44615-44625, 2000.

Ar, Fe, Xe 400
MeV/nucleon

Si, 800 MeV/nucleon

C, Al, Cu, Pb DDCS

4 T Kurosawa et al, Nucl Sci Eng, 132132132132, 30, 1999. C @ 100 MeV/nucleon

180 MeV/nucleon and
400 MeV/nucleon

He @ 180 MeV/nucleon

C, Al,Cu, Pb DDCS

5 D. Hilscher, et al, “Neutron production by hadron-induced spallation
reactions in thin and thick Pb and U targets from 1 to 5 GeV,” Nucl
Instrum Meth Phys Res, A414A414A414A414, 100-116, 1999.

p, p  ̄, K and (some) d, @
1-5 GeV

Pb, U Neutron multiplicity

6 B Lott, et al, "Neutron multiplicity distributions for 200 MeV proton-,
deuteron- and 4He-induced spallation reactions in thick Pb targets,"
Nucl Instrum Meth Phys Res, A414A414A414A414, 117-124, 1999.

1H @ 197MeV proton
2H @ 188MeV
4He @ 214MeV

Pb Neutron multiplicity
(questionable value due to
lack of normalisation?)

7 B M Quednau, et al, " Decay patterns of target-like and projectile-like
nuclei produced in 84Kr + 197Au, natU reactions at E/A = 150 MeV," Nucl
Phys, A606A606A606A606, 538-558, 1996.

84Kr, 150 MeV/nucleon 197Au, natural abundance U Neutron and alpha
multiplicity

Table 1:  Bibliography of experimental data sources on nuclear-nuclear interactions (part 1).



30

Summary

• Reviewed available models and data for nuclear-nuclear 
interactions

• Implemented improved models for total inelastic cross-
sections in Geant4

• Implemented macroscopic nuclear-nuclear final state model 
similar to NASA’s NUCFRG2

– This improvement should also allow better determination of nuclear 
excitation in microscopic models (Binary Cascade)

• Geant4 can now treat EM dissociation interactions, 
applicable to heavy projectiles or targets
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Other Issues to Address before Applying 
Geant4 to Interplanetary Missions
• Inclusion of nuclear forces on the projectile/target angular 

momentum (this would be relevant to low-energy 
projectiles);

• Validation of relativistic nuclear-nuclear interaction models 
(based on the QGS model) when they are developed by other 
members of the Geant4 Hadronics Group.

• Validation of Geant4 fission model for incident particle 
energies above ~1.2 GeV


