Review and Development of Nuclear-Nuclear Interaction Physics Models for Geant4

Contract 17191/03/NL/LvH **Pete Truscott & Fan Lei** 12 May 2004 QinetiQ Ltd, Farnborough, UK

Outline

- Project overview
- Background and requirements
- Geant4
- Physics models implemented
- Results and comparison with experiment and other models
- Summary

Project Overview

Ion-Nuclear Models for Analysis of Radiation Shielding and Effects

- WP 1 Review
 - Review requirements, models and available data
 - Summarise in Technical Note #1 & URD
- WP2 Implementation
 - SSD, SUM
- WP3 Validation
 - SVVP, Technical Note #2
- WP4 Software maintenance
 - Maintained for 2 year period
 - Modifications timed to coincide with major Geant4 releases during this period

Background and Requirements

- Species and energy range of source particles
 - GCR:
 - Very wide range in species, with noticeable dips after He and Fe
 - Typical energy range of concern: 10's MeV/A - 100's GeV/A, although mean energy is several hundred MeV/A.

- Solar particle events 10's MeV/A to ~1 GeV/A:
 - Impulsive, short-term events associated with solar flares have greater fraction of heavy particles
 - CMEs produce gradual events that are proton-rich and last
 Ionger
 QinetiQ

Background and Requirements

Dose - GCR

Dose Equivalent - GCR

Data from W Schimmerling, J W Wilson, F Cucinota, and M-H Y Kim, 1998.

Target materials involved

- Man-made / transported materials
 - Metal alloys of AI, Ti, Fe, Mg, Be
 - plastics and composites (incl glass, B and C-fibre)
 - oxidants and fuels (e.g. UDMH + NO_x)
 - deliberate shielding and mass balance (polyethene, water, W, Ta, Cu, Fe)
 - fissionable materials (namely uranium isotopes) if nuclear-powered propulsion used
 - crew consumables / life support

Martian and Lunar Soils

• Soil model based on previous NASA Langley studies:

	Lunar	Mars	Mars
	Langley model	Rep. Regolith	Basalt
- 0	61.5%	40.4%	61.3%
– Si	19.3%	14.1%	19.2%
– AI	7.5%		3.3%
– Fe	6.1%	4.4%	6.1%
– Mg	5.5%	39.2%	6.2%
– Ca		1.9%	4.1%

Final State - NASA NUCFRG2 Abrasion

- Macroscopic model for nuclear-nuclear interaction, rather than microscopic as in Binary and Classical Cascade, or JQMD
- Interaction region determined from geometric arguments
- Nuclear density assumed constant
- Number of "participants" in the overlap region based on approximation for nucleon mean-free path and maximum chord-length in the overlap region

- excess surface area of nuclear fragments
- average energy transferred to nucleons which do not escape the nuclear fragment

G4WilsonAbrasionModel

- In principle the abrasion model should provide advantages in speed over microscopic simulation
- Replace ablation process with Geant4 de-excitation models (evaporation, Fermi break-up, multi-fragmentation, and photo-evaporation) ... *later reconsidered*
- Abraded nucleons from projected and target nucleus treated, as well as de-excitation of projectile and target prefragments
- By-product of implementation is a Geant4 class for microscopic model to account for excitation as a result of nuclear asphericity

¹²C-C 600 MeV/nuc

¹⁶O-Cu 2100 MeV/nuc

¹⁶O-Cu 2100 MeV/nuc

⁴⁰Ar-C 1650 MeV/nuc

¹²C-C 1050 MeV/nuc

Comparison of secondary proton spectrum (at 30°) predicted by abrasion and binary cascade models, and experimental data for 800MeV/nuc ²⁰Ne incident on ²⁰Ne

Comparison of the percentage of times the predicted cross-section for fragment production is within a factor of E of the experimental value (for various projectile nuclei on carbon target).

Factor error, E

Execution Time

- G4WilsonAbrasionModel offers improved simulation speed compared with Binary Cascade model
- Simulation of 100,000 ions incident on 5mm ¹²C:

Projectile	G4WilsonAbrasionModel	G4BinaryLightlonReaction		
⁴⁰ Ar (2632 AMe	V) 107s	577s		
¹² C (8773 AMeV	/) 46s	196s		

Nuclear EM Dissociation

- Liberation of nucleons or nuclear fragments as a result of electromagnetic field, rather than the strong nuclear force
- Important for relativistic nuclear-nuclear interaction, *e.g.* for 3.7GeV/nucleon ²⁸Si projectiles in Ag, ED accounts for ~25% of the nuclear interaction events
- NASA model used in HZEFRG and NUCFRG2 predict ED events for 1st and 2nd moments of electric field and crosssections for giant dipole / quadrupole resonances (watch out for errors though)

Nuclear EM Dissociation

- The G4EMDissociation model is an implementation of the NUCFRG2 physics
- Applied for dissociation of projectile *and* target
- Note however that other nuclear fragments can also be produced but difficulty is getting cross-sections for those fragment production to integrate over virtual photon spectrum

$$N_{E1}(E_{\gamma}) = \frac{2\alpha Z_{T}^{2}}{\pi\beta^{2}E_{\gamma}} \left\{ \xi k_{0}(\xi)k_{1}(\xi) - \frac{\xi^{2}\beta^{2}}{2} \left(k_{1}^{2}(\xi) - k_{0}^{2}(\xi)\right) \right\}$$
$$N_{E2}(E_{\gamma}) = \frac{2\alpha Z_{T}^{2}}{\pi\beta^{4}E_{\gamma}} \left\{ 2\left(1 - \beta^{2}\right)k_{1}^{2}(\xi) + \xi\left(2 - \beta^{2}\right)k_{0}(\xi)k_{1}(\xi) - \frac{\xi^{2}\beta^{4}}{2} \left(k_{1}^{2}(\xi) - k_{0}^{2}(\xi)\right) \right\}$$

Comparison of G4EMDissociationCrossSection and HZEFRG1 predictions for EMD cross-section of ¹²C incident on a variety of targets.

Comparison of G4EMDissociationCrossSection and HZEFRG1 predictions for EMD cross-section of ⁵⁶Fe incident on a variety of targets.

G4EMDissociation	
²⁸ Si(14.5GeV/n, ¹⁰⁷ Ag) \rightarrow ²⁷ Al + p	
G4EMDissociation	Expe
216 ± 2 mb	165±
	128:
¹⁶ O(200GeV/n, ¹⁰⁷ Ag) → ¹⁵ N + p	
G4EMDissociation	Expe
331 ±2 mb	293 :
	342:
²⁴ Mg(3.7GeV/n, ¹⁰⁷ Ag) \rightarrow ²³ Na + p	
G4EMDissociation	Expe
124±2 mb	154 :

Experiment 165±24 mb 128±33 mb

Experiment 293 ±39 mb 342 ±22 mb

IONMARSE

- Classes implemented:
 - G4TripathiLightCrossSection: improved total inelastic cross-section model for protons and light nuclear projectiles/target
 - *G4ESAGeneralNNInelasticCrossSection*: General cross-section model selector for proton/nuclear-nuclear interactions
 - G4WilsonAbrasionModel : Abrasion (macroscopic) interaction model
 - G4WilsonAblationModel: Ablation+evaporation model as an alternative to standard Geant4 de-excitation (evaporation / break-up / fission)
 - *G4EMDissociation*: Electromagnetic dissociation model

Experimental Data for N-N Interactions

- Large amount of data for heavy target nuclei such as silver, gold, lead, bismuth and depleted uranium - not as relevant to space
- Some information on double differential crosssections for lighter nuclei, including the sources of data used by Yariv and Fraenkel

No	Reference	Source particles	Target material	Quantities measured
1	T Kato, <i>et al</i> , "Systematic analysis of neutron yields from thick targets bombarded by heavy ions and protons with moving source model," <i>Nucl Instrum Meth Phys Res.</i> A480 , 571-590, 2002.	C @ 100, 180, and 400 MeV/nucleon	C, Al, Cu, Pb	DDCS for neutrons
		Ar @ 400 MeV/nucleon		
		Fe @ 400 MeV/nucleon		
		Xe @ 400 MeV/nucleon		
2	H Sato <i>et al</i> , JAERI Conference 2000-005, 261, Proceedings of the 1999 Symposium on Nuclear Data, 18-19 November 1999, Jaeri, Japan, 2000.	C @ 135 MeV/nucleon	C, Al, Cu, Pb	DDCS
3	T Kurosawa <i>et al</i> ," Neutron yields from thick C, Al, Cu, and Pb targets bombarded by 400 MeV/nucleon Ar, Fe, Xe and 800 MeV/nucleon Si ions," <i>Phys Rev,</i> 062 , 44615-44625, 2000.	Ar, Fe, Xe 400 MeV/nucleon	C, Al, Cu, Pb	DDCS
		Si, 800 MeV/nucleon		
4	T Kurosawa et al, Nucl Sci Eng, 132, 30, 1999.	C@100 MeV/nucleon	C, Al,Cu, Pb	DDCS
		180 MeV/nucleon and 400 MeV/nucleon		
		He @ 180 MeV/nucleon		
5	D. Hilscher, et al, "Neutron production by hadron-induced spallation reactions in thin and thick Pb and U targets from 1 to 5 GeV," <i>Nucl</i> <i>Instrum Meth Phys Res</i> , A414 , 100-116, 1999.	p, p̄ , K and (some) d, @ 1-5 GeV	Pb, U	Neutron multiplicity
6	B Lott, <i>et al</i> , "Neutron multiplicity distributions for 200 MeV proton-, deuteron- and "He-induced spallation reactions in thick Pb targets," <i>Nucl Instrum Meth Phys Res.</i> A114 , 117-124, 1999.	1H@197MeV proton	Pb	Neutron multiplicity
		² H@188MeV		(questionable value due to lack of normalisation?)
		⁴ He @ 214MeV		
7	B M Quednau, <i>et al.</i> " Decay patterns of target-like and projectile-like nuclei produced in ⁸⁴ Kr + ¹⁹⁷ Au, ^{nat} U reactions at E/A = 150 MeV," <i>Nucl Phys</i> , A606 , 538-558, 1996.	⁸⁴ Kr, 150 MeV/nucleon	¹⁹⁷ Au, natural abundance U	Neutron and alpha multiplicity

Table 1: Bibliography of experimental data sources on nuclear-nuclear interactions (part 1).

• Data being used to validate new models

Summary

- Reviewed available models and data for nuclear-nuclear interactions
- Implemented improved models for total inelastic crosssections in Geant4
- Implemented macroscopic nuclear-nuclear final state model similar to NASA's NUCFRG2
 - This improvement should also allow better determination of nuclear excitation in microscopic models (Binary Cascade)
- Geant4 can now treat EM dissociation interactions, applicable to heavy projectiles or targets

Other Issues to Address before Applying Geant4 to Interplanetary Missions

- Inclusion of nuclear forces on the projectile/target angular momentum (this would be relevant to low-energy projectiles);
- Validation of relativistic nuclear-nuclear interaction models (based on the QGS model) when they are developed by other members of the Geant4 Hadronics Group.
- Validation of Geant4 fission model for incident particle energies above ~1.2 GeV

