Geant4 Software Development and Application at QinetiQ

Fan Lei, Pete Truscott, Clive Dyer & Simon Clucas Space Department, QinetiQ 11-05-2004

Contents

- Background
- ESA contracted activities
- MOD and in house activities
- Experiences and new user requirements

Background

- QinetiQ: Largest R&D organization in Europe, ~ 7000 scientists and engineers
- Formerly the Defence Evaluation and Research Agency, UK
- Cover of all areas of non-nuclear defence research
- Space environment and protection group in the Space department

Main areas of our simulation activities

- Simulation of whole spacecraft system: XMM, INTEGRAL etc.
- Simulation of the radiation environment: terrestrial/space/artificial
- Radiation effect analysis at system and component level

QinetiQ

- Crew/Passenger radiation dose estimate
- Simulation of radiation beam tests
- Microdosimetry /Device simulations

Geant4 activities:

- Joined the Geant4 collaboration in 1998 with the SPARSET project funded by ESA.
- Carried out 5 ESA funded projects so far.
- Significant (~50%) supports from MOD.

ESA Supported Projects

- SPARSET (completed)
- REAT (~ completed)
- SpaceGRID (completed)
- SEPTIMESS (on-going)
- IONMARSE (~ completed)
- XMM simulation support (completed)

QinetiQ

SPARSET: Space Radiation Shielding and Effect Toolset

Collaborator: University of Southampton WWW: <u>http://www.space.qinetiq.com/geant4/geant_mn.html</u> Completed in 2001

Products:

- Sector Shielding Analysis Tool (SSAT)
 - <u>http://reat.space.qinetiq.com/ssat</u>
- CAD front-end tool (MGA)
- Radioactive Decay Physics (RDM)
- Internal Conversion Physics

SPARSET(II)

Products:

- General Particle Source Module (GPS)
 - Released the first version
- Low energy electromagnetic processes

Specific studies:

- Comparison of G4 hadron physics with FLUKA/GCALOR/MCNPX
- X-ray fluorescence from basalt

REAT: Radiation Effect Analysis Tools

Collaborator: SIRA Electro-Optics Ltd.

WWW: http://reat.space.qinetiq.com/reat

Products:

- Report on the detailed analysis of the requirements:
 Space Radiation Effects For Future Technologies and Missions http://reat.space.qinetiq.com/Reat/wp1_tn
- MULASSIS: MULtiple LAyered Shielding SImulation Software <u>http://reat.space.qinetiq.com/mulassis/</u> Also available under SPENVIS
- GEMAT: GEant4 Microdosimetry Analysis Tool
 - Incomplete and not available to the general public yet!

SpaceGRID:

- A major ESA project to investigate the applications of GRID technology in Space Researches.
 - Consortium lead by DATAMAT (Italy)
 - Completed in 2003.

http://www.spacegrid.org

- Radiation Transport Simulation (RTS) was one of the potential area.
- Collection of User Requirements, Infrastructure requirements.
- Application Prototyping
 - MULASSIS/G4

All documents and code available at:

http://reat.space.qinetiq.com/spacegrid

SpaceGRID:

Master/Slave task split

IONMARSE(I)

- Assessment and implementation of improved nuclearnuclear interaction models
- Physics implemented:
 - G4TripathiLightCrossSection: improved total inelastic cross-section model for protons and light nuclear projectiles/target
 - G4ESAGeneralNNInelasticCrossSection: General cross-section model selector for proton/nuclear-nuclear interactions
 - G4WilsonAbrasionModel : Abrasion (macroscopic) interaction model
 - *G4WilsonAblationModel*: Ablation+evaporation model as an alternative to standard Geant4 de-excitation (evaporation / break-up / fission)
 - **G4EMDissociation**: Electromagnetic dissociation model

IONMARSE(II)

QinetiQ

Comparison of the percentage of times the predicted cross-section for fragment production is within a factor of E of the experimental value (for various projectile nuclei on carbon target).

QinetiQ

Projectile	Energy [GeV/nuc]	Product from EMD	G4EMDissociation [mbarn]	Experiment [mbarn]
Mg-24	3.7	Na-23 + p	124 ± 2	$\textbf{154} \pm \textbf{31}$
Si-28	3.7	Al-27 + p	$\textbf{107} \pm \textbf{1}$	$\textbf{186} \pm \textbf{56}$
	14.5	Al-27 + p	$\textbf{216} \pm \textbf{2}$	$165\pm24^{+}$
				$\textbf{128} \pm \textbf{33} \textbf{\ddagger}$
0-16	200	N-15 + p	331±2	$\textbf{293} \pm \textbf{39} \textbf{\dagger}$
				$342 \pm \mathbf{22^*}$

Comparison of predicted and experimental EM dissociation cross-sections

SEPTIMESS(I)

Collaborators: Imperial College, Uni. of Southampton, INFN(Genova)/CERN, Uni. of Geneva, Uni. of Bern.

- Radiation effects analysis for ESA science missions
 - Payload and instruments
 - Simulation requirements
- Geant4 developments
 - Implementation of new physics process: G4FirsovScattering
 - Improvement to existing ones: Atomic relaxation and Radioactive decay.
 - Utilities and tools: Hadron data format and data set; Statistic testing toolkit; G4GeneralParticleSource.

SEPTIMESS(II)

- Mission specific Geant4 simulations
 - XMM-Newton
 - INTEGRAL
 - LISA
 - SMART-2
 - Bepi-Colombo
- Other Geant4 applications
 - Atmocosmics
 - Magnetocosmics
 - Advanced Example for Radioactive Decay

Non-ESA Geant4 Activities

- Radiation Environment modeling
- Shielding, total dose and NIEL analysis at design phase
- Operation phase analysis
- Simulation of proton/neutron SEUs in SRAMs
- Radiation beam test simulations
- Passenger and crew radiation dose calculations
- Microdosimetry: interface Geant4 to microelectronics device physics simulators

Radiation Environments

- Radiation Environments:
 - Atmospheric radiation model (ARM)
 - Response matrices (Geant4 or MCNPX)
 - cosmic ray and solar particle models
 - Influence of aircraft structure to the radiation field
 - Thermal neutron fluxes
 - Mars radiation fields
 - Rigidity cut-offs and effects of geomagnetic condition
 - Linked to ARM

ARM: Comparison of response Matrices

•Atmosphere model: MSISE90

•Neutron spectra at 15 km

• 0 GV cut-off

• Cosmic ray proton Contribution only

ARM: Response matrix example

Secondary Neutrons at Various Altitudes

Incident particle: alpha

ARM: Example of particle spectra

Date: 01-Aug-1988 Altitude: 10 km Cut-off: 1 GV GMC: kp = 0

ARM: Secondaries from GLE 23/02/1956

Time: Peak of SPE 23/02/56 Altitude: 10 km Cut-off: 1 GV GMC: kp = 0

Model of the Mars atmosphere & ground

Air Comp	osition	
0	19100	
С	9539	
Ν	540	
Ar	160	
Н	6	

Soil Co	omposition	density = 1.4 g/cm3
0	16700	
Mg	1620	
Si	5830	
Са	781	
Fe	1800	

Examples of radiation on Mars

QinetiQ

Shielding, TID & NIEL analysis

- Standard radiation analysis at mission level:
 - G4 (MULASSIS) was used to derive TID and NIEL dose depth curves for Si and GaAs.
 - Shielding distributions obtained with SSAT.
- Component level analysis at design and operation phases:
 - TID analysis.
 - Secondary particle fluence.
 - Shielding distributions.

Example of Shielding Analysis:

- Left picture from a CAD/STEP file
- G4STEPReader and MGA worked with this file, but
- G4Brep surface classes are incomplete
- → Labour intensive re-modeling

Example of SSAT results:

QinetiQ

Example of G4 dose analysis at PCB level

Example: Simulation of SEUs In SRAMS

- Geant4 and IRTS/IMDC predictions of neutron and proton SEU and MBU over the range 1 to 500 MeV based on ion test data for a Hitachi 4-Mbit SRAM.
- Comparisons with test data.
- Sensitive volume: 4.5x4.5x0.5 μm

Two Possible Weibull Fits to Ion data for Hitachi-A Used as Input to Simulations for Proton & Neutron Cross-Sections

Proton Cross-Sections: Experimental and Simulation Comparison

QinetiQ

Neutron Cross-Sections : Experimental and Simulation Comparison

QinetiQ

Example: Simulation of radiation beam exposures

- Components in the module have to be tested to a specified dose level, with exposures from different angles
- G4 simulations were used to estimate the dose rate, hence the exposure time required.

Beam profile

- The beam intensity falls steeply with increasing radius
- At 10 cm distance it can be approximated by a Gaussian function
- The beam is assumed not parallel, with a 10 degree divergence angle
 - -> use GPS

Board-0: Front illumination

Board-0: Back illumination

Board-0: Side illumination

Board-0: Summary of dose rate

	High	Low	Average
Front	7x10 ¹⁰	1x10 ¹⁰	1.25 x10 ¹⁰
Back	2.5x10 ¹⁰	5x10 ⁹	1.06 x10 ¹⁰
Side	9x10 ⁹	3x10 ⁹	5.91 x10 ⁹

In units of Rads (Si)/sec

Microdosimetry

- Simulations of component/device beam tests, e.g. APS
- Interface Geant4 to ATLAS3D/SIVALCO simulator
 - G4 geometry model defined by the ATLAS3D device geometry file.
 - Options for adding packaging materials.
 - Various algorithms available for generating e-/h+ from G4 tracks.

More details in Pete Truscott's talk next.

Discussions (I)

- Geometry:
 - GUI to allow quick construction of simple geometry model
 - A Standard to allow common geometry model for various analysis
 - Real need for CAD/STEP capability. Will be a big selling point for G4
- Detector/Hits:
 - Surface detector
 - Mesh tally
- Analysis:
 - AIDA/ANAPHE: long term prospect?

Discussions (II)

- Physics:
 - Ion nuclear interactions
 - Microscopic NIEL calculation
 - Recoils
 - Separation of the nuclear/electronic energy loss
- More Biasing:
 - point detectors,
 - cross-sections/process/forced interactions

