

Gamma-ray Large Area Space Telescope

GLAST LAT G4 simulation

Francesco Longo University and INFN, Trieste, Italy <u>francesco.longo@ts.infn.it</u>

thanks to T.Burnett, X.Chen, E. do Couto e Silva, R.Dubois, R. Giannitrapani, B.Lott, H.Kelly, N.Omodei, S.Ritz, L.Rochester, T.Usher

On behalf of the GLAST LAT collaboration

Outline

- Description of the mission and instrument
- Science Analysis Software infrastructure
- G4 simulation
- Data Challenge 1

Geant4 2nd space users workshop

GLAST LAT

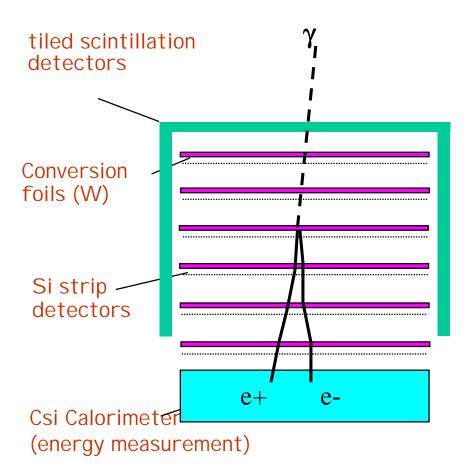
The GLAST Mission

GLAST measures the direction, energy and arrival time of celestial gamma rays

-LAT measures gamma-rays in the energy range ~20 MeV - >300 GeV

- There is no instrument now covering this range!!

 - GBM provides correlative observations of transient events in the energy range ~20 keV – 20 MeV


Launch:	February 2007		
	Florida		
Orbit:	550 km,		
	28.5° inclination		
Lifetime:	5 years		

(minimum)

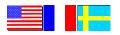
γ -pair conversion "telescope"

Pair production is the dominant photon interaction above 10 MeV

Characteristics

- Low profile for wide f.o.v.
- Segmented anti-shield to minimize self-veto at high E.
- Finely segmented calorimeter for enhanced background rejection and shower leakage correction.
- High-efficiency, precise track detectors located close to the conversions foils to minimize multiple-scattering errors.
- Modular, redundant design.
- No consumables.
- Low power consumption (580 W)

Geant4 2nd space users workshop


GLAST Large Area Telescope (LAT)

Si Tracker Tower pitch = 228 μ m 5.52 10⁴ channels 12 layers × 3% X₀ + 4 layers × 18% X₀ + 2 layers

Csl Calorimeter Hodoscopic array $8.4 X_0 = 8 \times 12$ bars $2.0 \times 2.7 \times 33.6$ cm

- $2.0 \times 2.7 \times 33.6$ cm
- \Rightarrow cosmic-ray rejection
- ⇒ shower leakage correction

Data **Data** acquisition

ACD Segmented scintillator tiles 0.9997 efficiency ⇒ minimize self-veto

Grid (& Thermal Radiators)

3000 kg, 650 W (allocation) 1.8 m × 1.8 m × 1.0 m 20 MeV – 300 GeV

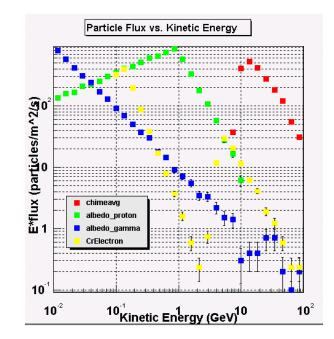
> 16 identical towers 300 Hz average downlink

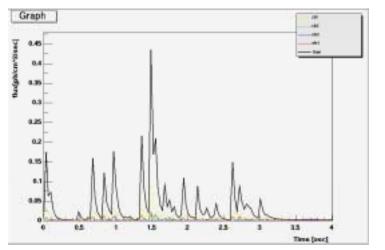
Why we need Simulation

- Calibration, assessment of pattern recognition, track fitting strategies
- Predict the following figures of merit, depend on incoming photon energy $E\gamma$ and angle θ :
 - Effective area A_{eff}: depends on geometric area, conversion probability, reconstruction efficiency
 - Point Spread Function (PSF): depends on multiple scattering, detector resolution, pattern recognition accuracy
- Develop a strategy and assess its effectiveness in suppressing the background from hadronic interactions. (Average trigger rate: 4 kHz: science rate: <10 Hz)

How we are (not) using G4

- The incident flux is modeled by a dedicated package
- Geometry database is XML based, independent
- We have our own graphics, GUI.
- The event loop is controlled by our framework, Gaudi (G4 is invoked event-by-event from an *Algorithm*)

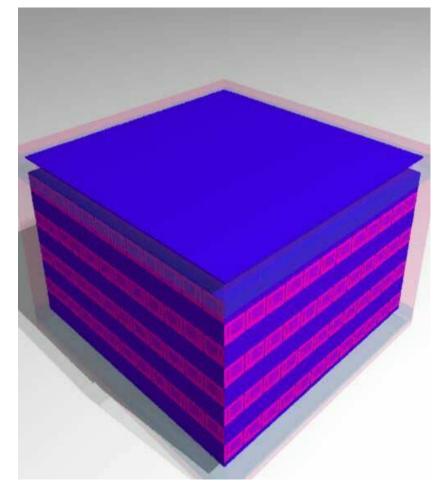



Sources: Incident Flux

- Types that must be available:
 - Primary and secondary GCR
 - Albedo gammas

GLAST LAT

- Galactic point & diffuse sources
- Distributions of energy spectra
- Various angles distribution
 - Zenith, spacecraft galactic or celestial coords
- Keep track of time
 - Orbit, rates, deadtime
 - Transients



- GRB physical model
 - Shell collision: Different Lorentz factors
 - Jet geometry
 - Synchrotron & Inverse Compton emission
 - Temporal and Spectral Evolution

Geometry Repository

- A complex instrument: GLAST geometry is formed by more than 40000 volumes.
 - A typical problem in HEP experiments (and GLAST is not so big)
- The geometry database in GLAST is in XML, a quite common choice (LHCb, Atlas and more) today
- detModel is a set of C++ classes to parse and represent in memory such XML description
- Used by various clients (reconstruction algorithms, MonteCarlo simulation, graphics etc. etc)

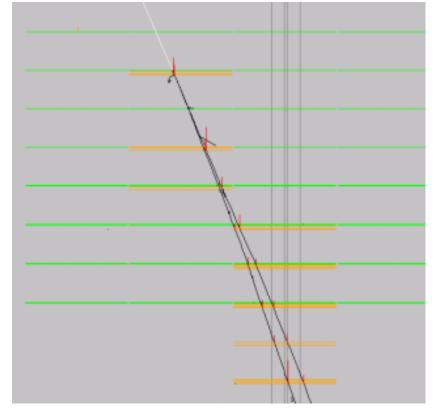
GLAST G4 physics

- Photon processes: Photoelectric, Compton Scattering and Pair Production
- Cross Section, Angular and Energy Distribution
- Charged particles processes
- Ionisation

GLAST LAT

- Landau and Bethe Bloch
- Range, Straggling, Stopping Power
- Multiple Scattering
 - Angular distribution, Energy Dependence
- Bremsstrahlung
 - Cross Section, Angular and Energy Distribution
- Delta Ray production
 - Energy distribution, Multiplicity
- Positron Annihilation
- EM shower development

- Muon-nucleus interactions
- Neutron interactions
- HE hadron-nucleus interactions
- Nucleus-nucleus elastic scattering
- Hadronic showers in Csl
- Radioactive decay



Requirements: EM processes Tracking region: small scale

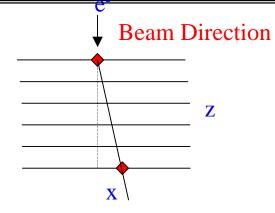
– Physics processes:

GLAST LAT

- Pair conversion
- Bremsstrahlung
- Multiple Scattering
 - MCS in the W layer determines the angular resolution!
 - Discover problem at MCS in version 5.*
 - Back to MCS v3.2 on the basis of experimental data

Secondary gammas not shown

white: incoming photon black: electron, positron green: W orange: hit Si wafers red: strip energy

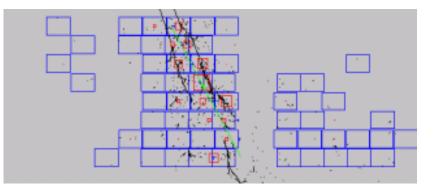

Note: other gamms not shown

Multiple Scattering validation

- Electron test beam at Frascati for AGILE (2003)
- Geometry:
 - 6 planes with 300 μm of W
 - Inter-plane distance 1.6 cm
- Analysis:
 - Require single cluster on the 1st and 6th plane
 - plot x/z

GLAST LAT

Energy (MeV)	Data: x/z distribuition	Fit sigma deflection (mrad)			
	450 79 mey mes comparíson credits to M.Prest - F.Longo (INJFN Trieste)	Expt	G3	G4 5.2	G4 3.2
79	450 460 350 350 350 100 150 100 100 100 100 100 1	109	104	81	101
650	4500 050 mev mos comparison sredits to M.Prest - P. Jongo (HPN Triasto) 4500 - 4500 - 4500 - 4500 - 3500 - 900 - 900 - 900 - 900 - 900 - 900 - <	14.6	13.3	8.4	14.2

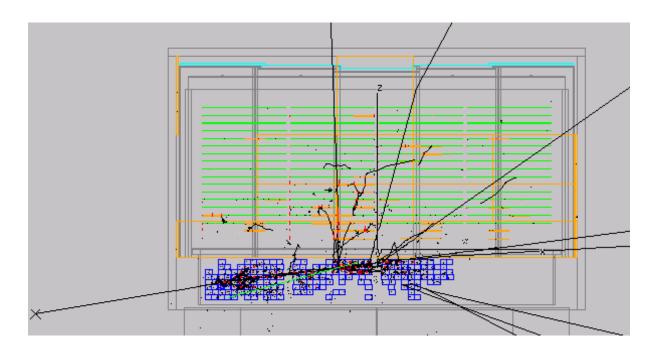

Requirements: EM processes

Calorimetry region: large scale

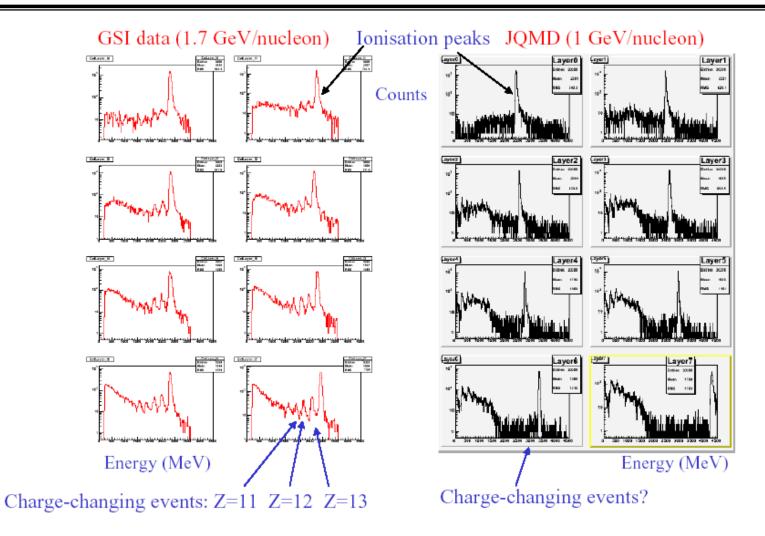
Basic shower properties for leakage correction

blue boxes: Csl segments black: electrons and positons

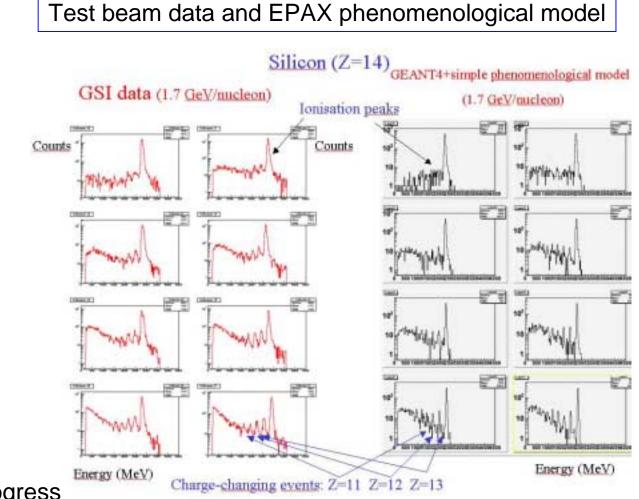
red: light repsonse



not much lost on this one!


Requirements: Hadronic Processes

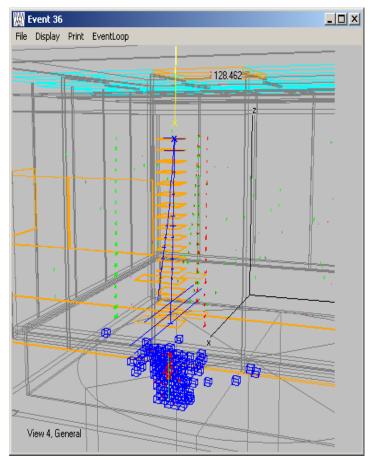
- proton-nucleus cross sections, multiplicities
- Same for He, C, N, O, etc. (components of cosmic rays)
- E loss for min-I heavy nuclei (used to calibrate calorimeter)



Heavy Ion Simulation

Heavy Ion Simulation

Work in progress


- Evaluation of G4 existing models
- New phenomenological models

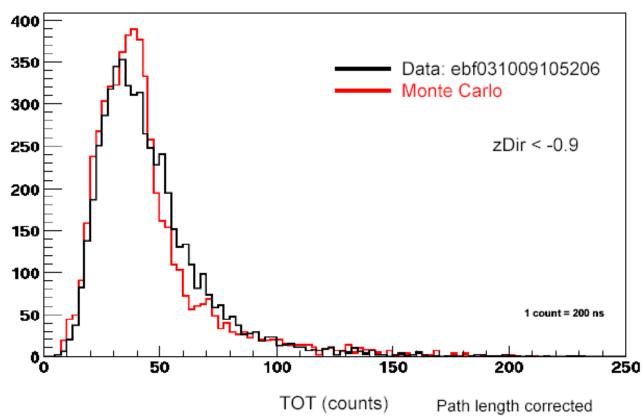
GLAST LAT full simulation

Event Reconstruction

- Sequence of operations, each implemented by one or more Algorithms, using TDS for communication
 - Trigger analysis: is there a valid trigger?
 - Preliminary CAL to find seed for tracker
 - Tracker recon: pattern recognition and fitting to find tracks and then photons in the tracker (uses Kalman filter)
 - Full CAL recon: finds clusters to estimate energies and directions
 - Must deal with significant energy leakage since only 8.5 X₀ thick
 - ACD recon: associate tracks with hit tiles to allow rejection of events in which a tile fired in the vicinity of a track extrapolation
 - Background rejection: consistency of patterns:
 - Hits in tracker
 - Shower in CAL: alignment with track, consistency with EM shower

Geant4 2nd space users workshop

Geant4 simulation

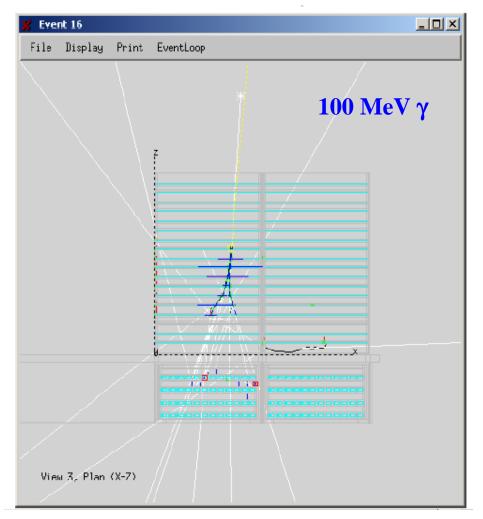

File Display Print EventLoop	
View 2, Side (Z-Y)	 18 MeV on-axis photon Engineering Model Mini-Tower EM Data Analysis Calibrate CAL and TKR Measure the energy spectrum of van de Graaff photons (17.6 MeV) Exercise flexibility of geometry input for the Monte Carlo simulations

Geant4 2nd space users workshop

Geant4 Simulation of EM

ToT ~ Estimate of Deposited Charge in Si Layer

Reasonably good agreement between DATA and MC


Geant4 simulation

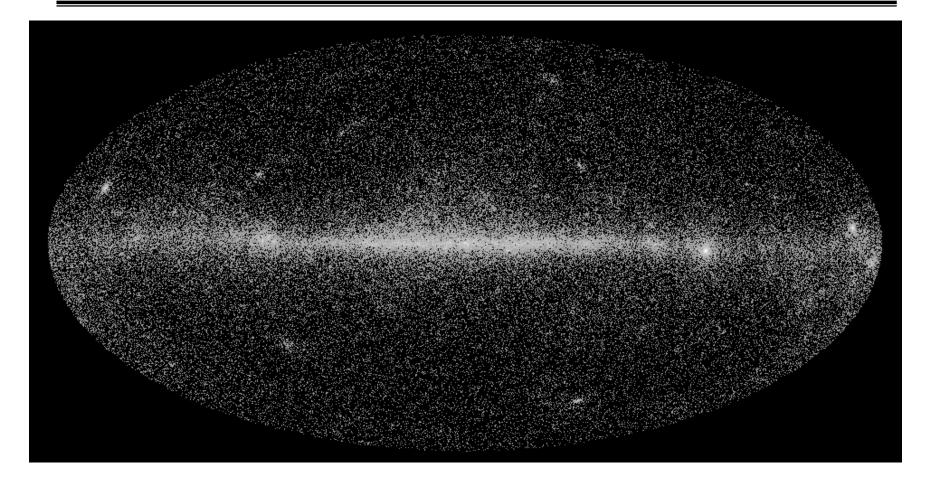
Common sets of MC events for tower integration foreseen for this summer

- 100 MeV photons on axis

GLAST LAT

- Surface muons (all angles)
- Van de Graaff photons (all angles)

1st two towers simulation



Data Challenges

- Support readiness by launch time to do all first-year science.
 - "End-to-end" testing of analysis software.
 - Familiarize team with data content, formats, tools and realistic details of analysis issues (both instrumental and astrophysical).
 - If needed, develop additional methods for analyzing LAT data, encouraging alternatives that fit within the existing framework.
 - Provide feedback to the SAS group on what works and what is missing from the data formats and tools.
 - Uncover systematic effects in reconstruction and analysis.
- DC1 December 2003 February 2004
 - Modest goals. Contains most essential features of a data challenge.
 - 1 simulated day all-sky survey simulation
 - find GRB
 - a few physics surprises
 - exercise:
 - » exposure, orbit/attitude handling, data processing pipeline components, analysis tools
- DC2, start beginning of 2005. More ambitious goals. Encourage further development, based on lessons from DC1. One simulated month.
- DC3. Support for flight science production.

DC1 gamma-ray sky-map

Conclusions

- Geant4 adopted as GLAST MC simulator
- Independent packages interacting with MC simulations
- Need reliable heavy ion simulation
- Need to trust releases of G4. Better validation procedure?
- Starting phase of massive MC data production for flight integration
- Data Challenge 1 completed
- Mission to be launched in 2007!