Geant4 'kernel' at release 6.1

Highlights of developments \& improvements

John Apostolakis, CERN
for the Geant 4 collaboration

Outline

- The 'kernel'
- Its categories
- Highlights of previous changes
- In releases 5.x and 6.0
- Recent changes in 6.1
- and some upcoming in 6.2
\square In Development (after 6.2)
- Revision of 'tolerance'

Categories

\square Kernel categories

- Run
- Event
- Tracking
- Process Management
- Track
- Geometry
- Particles
- Materials
- Auxiliary modules
- Visualisation
- GUI / User Interfaces
- Graphical representations

Run / Event

- Redesign of RunManager
-Modularization
Iseparation of 'mandatory behaviour' into G4RunManagerKernel class
- Additional entries

IFor HEPMC event, track vector
\quad Merging different kinds of primaries

- Maintain link between pre-assigned decay products and its primary particle

Process Management

Physics tables save/reload

- New requirement to cope with different setup on loading (compared to save)
- Several stages
- First step: improved error reporting (on failure) [6.0]
\square Second step: functionality improvement (6.1)
- Can read tables with different ordering of materials
- Future refinements
- In planning stages (no process changes)
- Under discussion (others)

Geometry

- Abstraction of G4Navigator (G. Cosmo)
- First level abstraction
- First consolidation of interface
\square Addition of Divisions (P Arce)
- Extend capability of Replicas

IOffsets available

- Fixes in Solids (V. Grichine)
- Safety in Boolean \& CSGs
- Sphere 'tolerance' fix (W. Pokorski)

Propagation in EM Field

\square Performance enhancement (5.2)

- Refinement of integration driver
- 15-20\% improvement seen (benchmarks, CMS)
- Ability to specialize integration accuracy
$\square \mathcal{E}_{\min }, \mathcal{E}_{\text {max }}$ now for each FieldManager
- Relative error for position, momentum direction, etc integration
- Choice of FieldManager by track
- Eg you can use it choose more precision for muon or for tracks > 5 GeV
J. Apostolakis

Propagation in EM Field (cont)

- Ability to use variant ChordFinder (in 6.0)
- Tailor to geometry
- For improve performance
J. Apostolakis
- By avoiding extra steps
- Fixes for missing intersections (in 6.0)
- Missing call to Navigator for chord (infrequent)
- Repositioning error in rare conditions
- Default parameters changed for higher accuracy
$\delta_{\text {intersection }} \mathcal{E}_{\min }, \mathcal{E}_{\text {max }}$

Additional categories

- Visualization
- Of ghost geometries for parameterization
- New HepRep XML driver for HepRep

- New visualization commands
- Improved handling of auto-refresh at end of event/run
- Removed obsolete OPACS driver.
\square Environments
- MOMO Java tools are now included
- GGE (Geometry editor), GPE (Physics editor)

Biasing

- Geometrical / Importance biasing
- In mass or 'parallel' geometry
- Tailored for geometries of small to medium complexity
Co-works with scoring
- Simple but extensible

New

- First implementation of "weight-window" biasing technique
M. Dressel (form at CERN)

Major items for users' code migration

- Forced usage of touchable-history to retrieve information for the geometry hierarchy
- Removed pointer to mother PV in e4vehysicalvolume
- New default values (more accurate) for propagation in field
- 'Non-magnetic' fields require now their chord-finder and equation of motion initialized directly
- New interface for registration of cross-sections in hadronics, now registered directly with the process (${ }^{*}$)
- Exception handling enabled in hadronic physics
- Mandatory kernel functionalities of the run-manager are now grouped in the new eaRunManagerKernel class (${ }^{*}$)
- New data set for low-energy EM processesfor advanced users

Items of development (after 6.2)

- Geometry
- Physical volumes with a parameterisation and placements.
- Revision of the 'Cartesian' tolerance
- Proposal for adjusting it to problem size
- For details see next slides
- Customization of the volume registration
-Enable user action on volume creation

Tolerance: what is it (for) ?

- Intersection of ray and surface
- Should be point on surface
- Yields imperfect 'point'
- With finite precision arithmetic
- Next step can encounter same surface
- Giving extra, unnecessary, boundary crossings and steps
\square In Geant4 the tolerance is used to avoid this:
- An intersection at a distance d < tolerance / 2 is discarded, except to enter a solid.

Use of 'tolerance' in navigating

- Inside
- If point is within tolerance/2 of exact surface, then it is considered on the surface
- DistanceToOut (point, direction, ..)
- Do not consider an intersection at distance d, if |d| < tol / 2
\square No intersection
- DistanceToln (point, direction)
- If intersection distance is $|\mathrm{d}|<\mathrm{tol} / 2$,
\rightarrow Ignore if $\mathrm{u}_{\text {dir }} \cdot \mathrm{n}^{\text {exit }}{ }_{\text {normal }}>0$

Tolerance today

\square Different types, defined in geomdefs.hh

- "Cartesian", absolute length: $\mathrm{kCarTolerance}=10^{-9} \mathrm{~mm}$
- "Angular", relative: kAngTolerance= 10^{-9} rad
- "Radial", absolute length: kRadTolerance $=10^{-9} \mathrm{~mm}$
- Constants, determined at compile time
- Must adapt G4 installation to problem size.
- Values chosen to be much
- Smaller than any physically important length scale
- Larger than machine precision (ε) for typical sizes (L)

$$
\varepsilon L \ll \mathrm{t}_{\text {car }} \ll \lambda
$$

Difficulties with tolerance today

- Issues
- Default values are not good for large (> 10 Km) or small ($<1 \mu \mathrm{~m}$) setups
- Corner problems for solids with large length ratios
- Cannot use a single G4 installation for problem sizes with wide range of scales.

Current actions \& proposals

- Relative tolerance for radius
- Implemented in G4Orb already
- A simple 'full' sphere
\square Studied and are prototyping a revision of the tolerance
- Changing it to a value that is fixed for a run
- Adjusting it to the problem size $L_{\text {max }}$

$$
\mathrm{t}_{\mathrm{car}} \cong \tilde{=} \mathrm{L}_{\max }
$$

Summary

- Geant4 kernel in release 5.1 to 6.1
- Changed to accommodate regions and associated productions thresholds
- Evolved 'at the margin', given its maturity
- Key areas of kernel evolution
- Extension / orthogonalization of geometry creation capabilities
- Performance and robustness improvements
- Great benefit from User feedback (Thanks!)
- Refinements \& further improvements and development are ongoing.

THE END

Thanks to all
-Contributors -Users

Also new in Geometry

- Reflection of a volume hierarchy
- Eg to create endcap geometry

I Hrivnacova
G Cosmo
V Grichine

- Improved voxelisation for performant navigation
- 3-D voxels for parameterized volumes
- Now equal performance to 'placed' volume
- Option to avoid voxelizing some volumes
- 'Illegal' geometries detected \& rejected

G Cosmo

- E.g. incompatible daughters (placed \& param. in one mother)
- XML binding: GDML 1.0 released R Chytracek
- Specification \& Implementation
- First 'input' module available'.

New Viz functionality

- New commands, with better control
- DTREE
- Output of geometry tree - To ascii
\square Visualisation of Boolean solids
- Future:
- DCUT: slice view in multiple drivers
- Improved DrawTrajectory()
- Curved trajectory handling

Geant4 5.2: other issues

- Release 5.2 builds on the release 5.1 of end-April, which provided the "cuts/region" capabilities - a major development required by large experiments (on timescales agreed Sept 2002, which revised original ones of Feb 2002).
- Full release notes.
- Focus:
- priority to improvements to stability and performance
- moved to full direct use of stl, taking out "g4stl" in code (was for non-std STL implement eg gcc/egcs)
- Key fixes:
- Massless particles that caused NaNs \& core dumps (found by CMS, using new physics lists)
- Multiple scattering: fixes for muons, electrons at high energies (GLAST reports). To do: further revisions >100 MeV
- Improved pion cross-sections
- New in 5.2
- Alternative physics models for low-energy EM, implementing Penelope models
- Example implementing TIARA-experiment setup for neutrons.

Cuts per region

\square Production thresholds ('cuts') per region

- Geometry, Kernel, EM processes, ..
- First 'full' release in Geant4 5.1 (April)
- Further refinements, validation (May-June 2003)

Examples of improvements

Fixes and improvements in Geant4 release X.y (month 200x)

- Geometry
- Fix for
-EM
- Hadronics

