

Geant4 related analyses at ESA

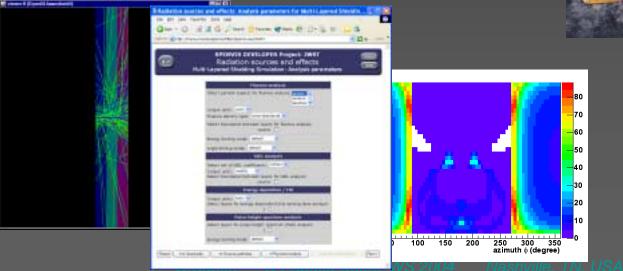
<u>G.Santin*</u>, P.Nieminen, E.Daly, A.Mohammadzadeh, H.Evans* Space environment and effects section – TEC-EES ESA / ESTEC

* RHEA Ldt

Geant4 Space Users' Workshop 2004 Vanderbilt, Nashville, TN, USA

Particle transport simulations in the space environment domain

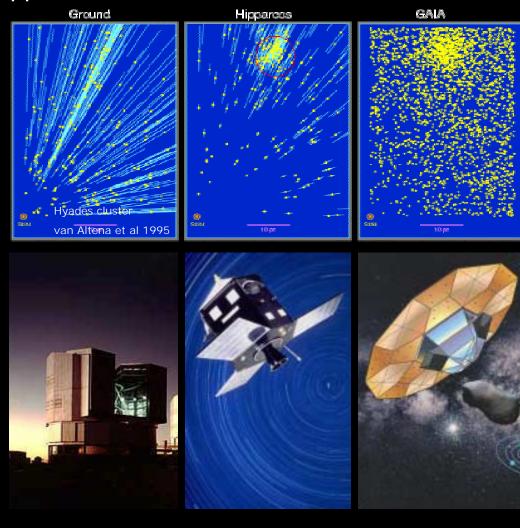
- Interaction of environment particles with spacecraft structure and detectors
 - Primaries, secondary particle production
 - Dose estimation (Ionising, Non-Ionising)
- Microscopic effects description
 - Charge balance, SEE, displacement damage,...
- Space environment modeling
 - Trapped radiation (Earth, Mercury,...)
 - Atmospheric showers (Earth, Mars,...)
- Scientific detector studies (signal extraction, background estimation,...)


- Result uncertainties
 - Simulation engine models
 - Component parameterisation
 - Geometry model approximations
 - Systematics from the space environment models
- ESA is trying to address all these aspects
 - In-house work
 - External contracts

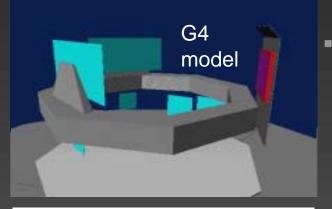
- MC tool requirements
 - Physics description \rightarrow proton, electron, ion, neutron, pion, gamma (+X-ray), optical photons
 - Wide energy range
 - Geometry description (I/O, flexibility)
- Geant4 chosen by ESA as standard simulation toolkit for particle transport
 - Becoming adequate for the description of the relevant phenomena

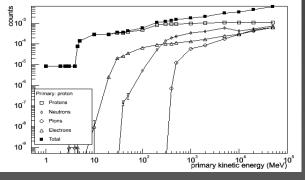
Mission simulation and engineering tools

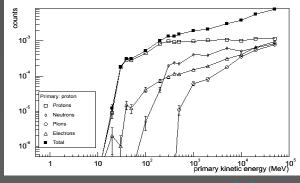
- "Applications" targeted at a specific mission or problem
 - Mission analyses
 - Degradation, background, charging
 - Examples: XMM, GAIA, Smart-2
 - Radiation monitors: design and calibration
 - SREM, MRM
- Simulation "engineering tool" development
 - Shielding optimisation
 - Radiation effects to detectors/components
 - More detailed tools as new standard
 - SSAT, MULASSIS, NIEL



The GAIA mission

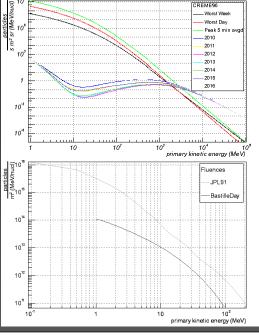

- Multi-epoch survey of the central regions of galaxies with high spatial resolution and multicolor photometry
- Successor to ESA's Hipparcos satellite (1989-'93)
 - a factor of more than 100 improvement in accuracy
 - a factor 1000 improvement in limiting magnitude, and
 - a factor of 10000 in the number of stars observed
- Target for the launch: 2010
 - L2 orbit



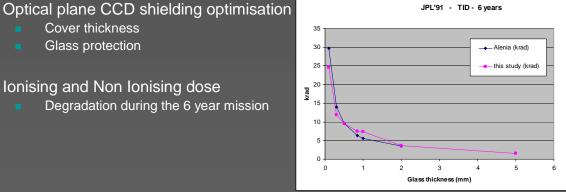


GAIA Focal plane radiation analysis

- Protons spectra relevant for the L2 radiation environment
 - "Flare" model environment
 - CRÈME'96 (worst week/day, peak 5 min)
 - Quiet time environment
 - CRÈME'96 model (2010-2016)
 - 6 year mission total proton fluence
 - JPL'91, 90% confidence level
 - Individual solar events


Cover thickness

Glass protection


Ionising and Non Ionising dose

Degradation during the 6 year mission

- Examples of real data spectra
- NOAA database
- Bastille day event

JPL'91 - TID - 6 years

GAIA Sector Shielding Analysis Tool (SSAT) Ray tracing: from a user-defined point (θ) ⁸0.8 100 (g/cm²) within a Geant4 geometry → 90 0.6 80 shielding levels (fraction of solid angle for 0.4 70 which the shielding is within a defined 0.2 60 interval) and -0 50 shielding distribution (the mean shielding) -0.2 40 -0.4 level as a function of look direction). 30 -0.6 20 It utilizes geantinos -0.8 10 -1_ò Provides both global shielding and 50 100 150 200 250 300 350 shielding from single materials (⊕) 008 00.8 (g/cm²) 0.6 0.4 0.2 10 -0.2 thermal tent -0.4 GAIA: view from the CCD surface -0.6 -0.8 mirrors and 200 250 300 350 azimontbolj (degree)

supports

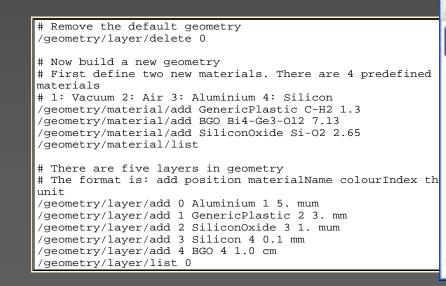
50

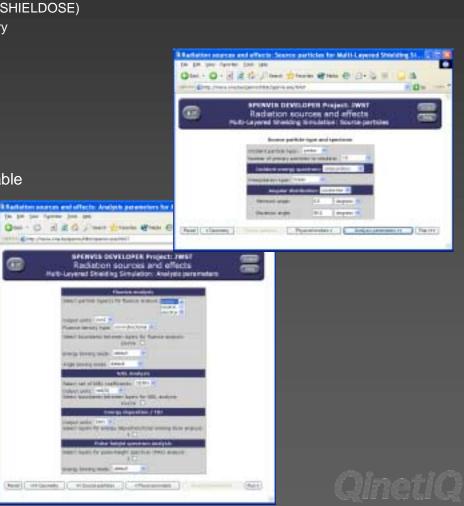
CCD front

cover and

electronics

100

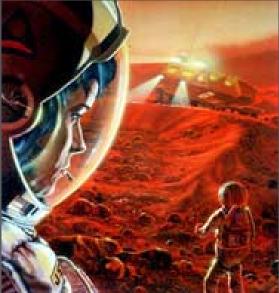

150

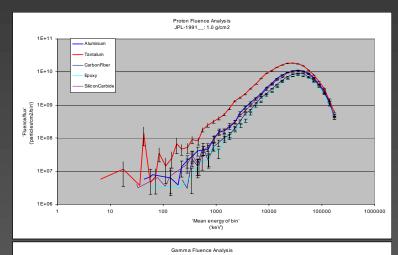

optical bench

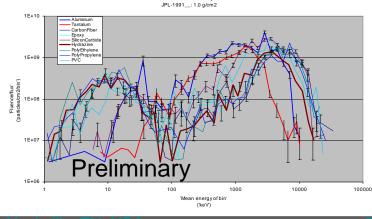
antenna

MULASSIS: MUlti-LAyer Shielding Simulation Software

- User Requirements
 - Increasing mass \rightarrow secondaries more and more important
 - Difficult with analytical models or look-up table approach (SHIELDOSE)
 - Detailed radiation effects analysis in a multi-layer geometry
 - User-friendly (to non C++ programmers)
 - Basic Space-Environment options included
- WWW tool, Geant4 based, for shielding calculations
- Integrated into SPENVIS with a WWW interface
- Source code and precompiled executables downloadable
 - Local interactive use for high statistics applications


in G4 Space Users' WS 2004 Nashv

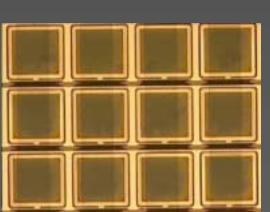

Bepi Colombo shielding analysis


Mission in early design phase

- Material shielding performance study
 - With the MULASSIS tool
 - In the radiation environment along the mission to Mercury (model)
 - For a list of selected solar particle events

Similar MULASSIS analysis for Man2Mars

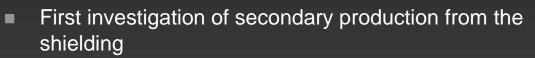
NIRSpec – Near InfraRed Spectrometer

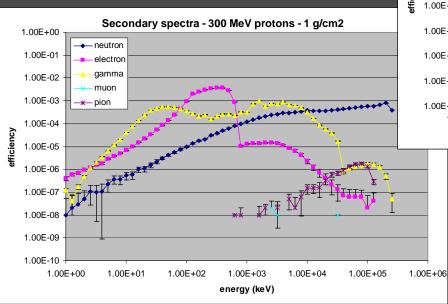

- European responsibility
- mercury cadmium telluride (HgCdTe) detector
- Multi object \rightarrow Micro-shutter array (MSA) or other solutions

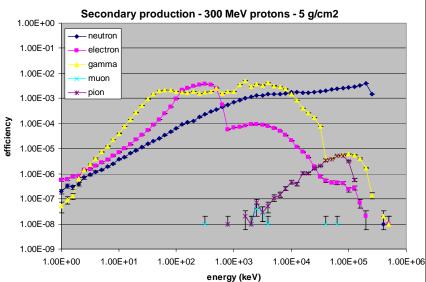

JWST

James Webb Space Telescope

NASA mission, Successor of Hubble Space Telescope

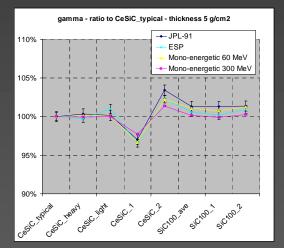

- US, Canada, Europe collaboration
- Launch 2011, L2 orbit
- Mirror diameter 6.5 m
- Deployable sun-shield
- Mass ~ 6 tons
- Instruments
 - 0.6 28 um (far visible mid-infrared light)
 - Visible Near IR Camera (NIRCam)
 - Near-IR Multi Object Spectrograph (NIRSpec)
 - Mid-IR Camera Spectrograph (MIRI)



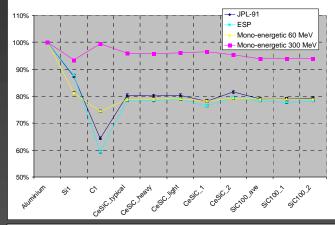

James Webb Space Telescope SiC Shielding effects

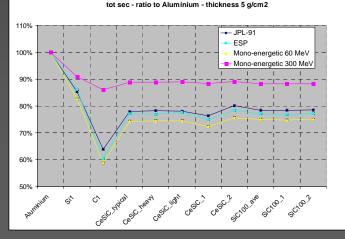
- SiC structure, ~10's of mm
- MULASSIS simulations
 - Solar protons: JPL'91, Xapsos
 - Monoenergetic source

Secondary fluence after shielding



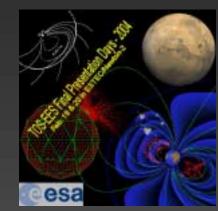
Nashville, TN, US


James Webb Space Telescope SiC Shielding effects


- Precise comparison of different Silicon Carbide manufacturing techniques
 - Total secondary production "efficiency"
 - Comparison to Aluminium
 - Comparison among SiC's

- Results are precise and behave as expected, but depend on cross section and secondary production validation
 - Open issue

tot sec - ratio to Aluminium - thickness 1 g/cm2



Displacement Damage Effect Tool (1)

- Nuclear Chemistry Dept., University of Köln, Germany
 - contract with ESA / ESTEC / TEC-QCA
- Aim: Simplify the space qualification procedure for new electronic deviced used in space missions
 - Calculate the displace damage effects in semiconductors induced by NIEL during a space mission
 - Estimate the resulting performance degradation of electronic circuit components

Independent modules

- From Rad.Env. Specs to NIEL
 - via G4 particle transport
- From NIEL to parameter degradation
 - via ground irradiation tests

SPENVIS

- Orbit generator
- Radiation environment
- S/C shielding + MULASSIS

Mission particle spectra on device level

Ground Test Irrad.

 Irradiate device with one particle type and energy

Parameter degradation for one particle type & energy

Simulation Tool

NIEL calculation for each particle type

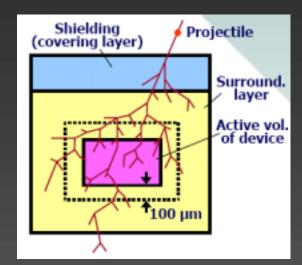
NIEL scaling of parameter degradation

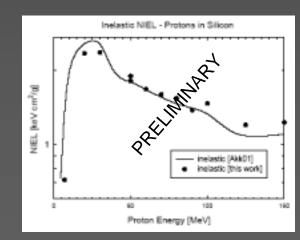
Prediction of mission parameter degradation

ESTEC Noordwijk, 19-20 February 2004

Klaus Thiel and Hans Herbert Fischer

G.Santin G4 Space Users' WS 2004 Nashville, TN, U


Displacement Damage Effect Tool (2)



NIEL module

- Projectile and target specific calculation
 - Microscopic approach: MC simulation of the cascade step by step in the vicinity of the active volume, or
 - Lindhard partition function
- For protons, MC-NIEL will be available after the implementation of the binary Coulomb scattering process in Geant4
 - (now only statistical treatment in MSC)
- Some Geant4 bugs have been found, analyzed, and reported to the Geant4 team.
- Graphical User Interface (GUI)

		amaters flams	out Annyine	
	1000	Development of	Presidence Thereis	-
the Will And	studied and then the	nine Treasure		
Pulle	Sectors.	85,754	distories.	Star.
-		10.000		100 B 400
and Ministers of		serve that is not as		
	Balance .	A GLOTING	district inter	State 1
	the state	100.0	10.040	the state
L constant				
	March 144	And and	Seattle and	
1	11	1	1000	1.00
		The other Designation	Contraction of the	
	-	- block of sectors in	statile in case to a local	-
.8		.101		
				and the second

New Geant4 models for space applications

- Study to Identify Component Radiation Effects Models for the GEANT4 Toolkit
 - Effect Literature study
- Investigation of potential radiation effects to components
 - Dose / <u>SEE</u> / NIEL
- Quantitative selection criteria
 - based on general, technical, and Geant4 issues
- On-going work
 - Model detailed study
- Follow-on work
 - Implementation of selected models

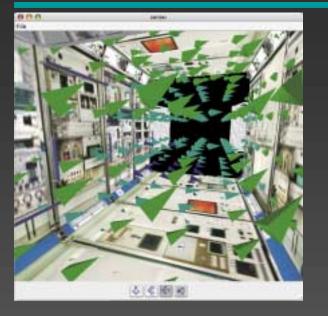
Study to Identify Component Radiation Effects Models for the GEANT4 Toolkit

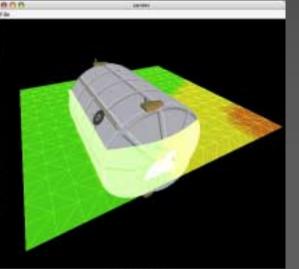
WP1: Effect Literature study

Report in Response to AO1-44050384.44E Estee/ contract No , 17453/03/ML/HE

Prepared by

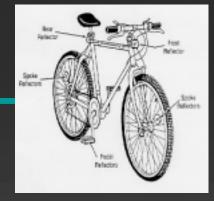
ONERA


(Office National d'Etudes et de Becherobes Aérospatiales) Département Environnement Spatial


> Jean Pierrs Durid Bophie Duzellier Christophe Inguischeri Theory Naus

> > ORDA NUMBER

DESIRE - RadVis


ひくやめ

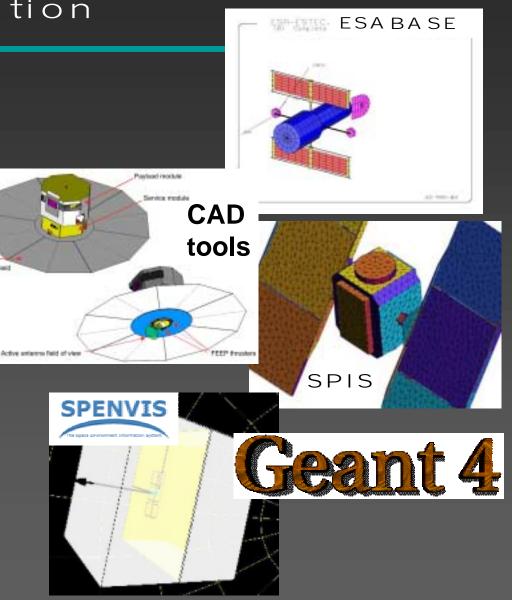
- DESIRE RadVis will be used to visualise radiation flux and dose data resulting from the DESIRE project
 - rapid and easily compressible manner
 - improve radiation awareness of astronauts and ground personnel at ESA.
 - 3D visualisation of radiation flux and dose levels in and around the module
 - It will also calculate and display the total combined dose contributions of the input data
- Developed using Java and Java3D technology
 - Designed for use on desktop PCs running Windows
 - Will also support stereoscopic rendering on more exotic display systems and using other operating systems

Data Analysis for Space applications

- Moving from "toolkit" to "tool" for specific cases and analyses
 - Long standing discussion...
 - Caveat's
 - G4 too rich and complex to be entirely closed in a "tool" envelope
 - Nevertheless...
 - MULASSIS is a first specific example
- Space Analysis Module (\rightarrow SPAM)
 - Preliminary phase
 - Other G4 Space users are probably doing the same
 - Some results can be useful to the G4 community if generic enough
- Open issues
 - Interface to analysis tools
 - ROOT, AIDA compliant tools,...
 - G4 independence of specific analysis solution is strategically right
 - Clear view of status and evolution for some of these tools is essential
 - Interface to geometry
 - GDML or C++ or...
 - Adoption of GDML by G4 is very appreciated
 - Standard tools to interact with a generic geometry are needed
 - Sensitive volume
 - Visualization

Tentative summary of issues emerged

Physics


- Medium energy proton physics
 - Gap in the range 5-10 GeV ?
- Ion physics: Cumulative effects (Dose) and SEE
 - Extension to heavy ions ?
 - Validation of existing models for light ions ?
- NIEL: Coulomb scattering contribution
- Geometry description
- Analysis
 - Standard extraction of relevant information for typical simple cases
- Shielding and Micro-dosimetry
 - Reverse Monte Carlo?
 - Biasing
 - Present limitations, future upgrades

Radiation environment and effects Tools harmonisation

Earnibield

Input

- Geometry
 - STEP for Space Environment
 - GDML
 - SPENVIS
- Space Environment
 - Common Data Format (CDF)
- Output
 - Analysis tools
 - AIDA
 - Geometry

G4 Space Users' web page

- Gathering the experience of the various groups around the world
- Updates with news users w/ link to relevant sites
- Collection of topics, interesting papers
 - Quite extensive list
 - Please send me an e-mail if you want to be included
- Link to space related tools
 - SSAT, MULASSIS, ...
 - Any other?
- Suggestions?

G.Santin G4 Space Users' WS 2004 Nashville, TN, USA

- Successful application of G4 Monte Carlo techniques for the estimation of the HE Radiation Environment effects on satellites
 - Environment models
 - Radiation effects on components and detectors
 - Complete mission analyses and engineering tool development
- Geant4 description of spacecraft-particle interaction suitable for manned and un-manned mission analysis
 - Assessed EM physics performance
 - New promising hadronic models need
 - validation for protons
 - validation and extension for ions
- Need for engineering tools (G4-based) is always valid
- Geant4 Space Users' world community
 - ESA still maintains the web page with users, topics, relevant papers
- Fruitful interaction with the Geant4 collaboration
- ESA Round Table on Radiation effects software R&D
 - ESA/ESTEC, The Netherlands, June 7th 2004