## GEANT4-Based Design of a Particle Spectroscope : The Energetic Particle Telescope (EPT)

M. Cyamukungu<sup>1</sup>, Gh. Grégoire<sup>1</sup>, S. Benck<sup>1</sup> and J. Lemaire<sup>2</sup>

<sup>1</sup>Center for Space Radiations, UCL

<sup>2</sup>Belgian Institute for Space Aeronomy

<u>Acknowledgment</u>: The Belgian Institute for Space Aeronomy has funded the hardware construction of the EPT prototype.

## **Motivations**

BISA-

#### Scientific objectives

• Pitch angle distribution of very energetic ions and electrons trapped in the Radiation Belts with an improved angular resolution

• Survey and model the energy spectra of these particles with a time resolution of the order of the spin period of the spacecraft

• Develop a new directional flux model for energetic protons near the inner edge of the radiation belt

• Study (realtime) changes of pitch angle and energy distributions as consequences of the expansion of the upper atmosphere during enhancements of solar and geomagnetic activities or other types of space weather events

#### Instrumental features

•Angular distribution and energy spectra of charged particles

• High performance of particle discrimination in-flight

•Very low background

•High data acquisition rate

•Optimal Energy range/Cost ratio



## **Design methodology**

Basic mechanical assembly designed using range and stopping power tables

Aluninium housing

BISA-

Α

S B

Optimization by extensive use of Monte-Carlo tools (GEANT)

- In-beam test of components
  - Efficiency calculation

36

2 nn thick scintillators

Anticoincidence scintillator

**Discrimination features** 

**CSR-**



03 mm thick Silicon E- 🚛

thick Silic





### Numerical calibration

**Procedure:** GEANT tracking of isotropic fluxes of electrons (0.1 - 15 MeV), protons (0.2 - 300 MeV), He (2 - 500 MeV) and Li (4 - 500 MeV).

#### **Results:** the low energy section

RISA



• Particle species are well separated using the energy loss from the 0.15 mm ( $\Delta$ E) and 0.3 mm (E) thick Si sensitive elements.

• 8 logarithmically spaced energy channels are defined for each particle type.



#### **Results:** the high energy section

BISA-

ASB



GEANT4 space user workshop, Vanderbilt, May 10, 2004

**CSR-**

IICI

### **Results:** the high energy section (channel limits)

|                                                                                     | PATTERNS                                        |                                                                                                               |                                                                                             | e <sup>-</sup>                                                            |                                                                                              | р                                                                                                                                                       |                                                                                              | α                                                                                                                                                                        | Li                                                                                           |                                                                                                                                                                          |  |  |
|-------------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| N<br>r                                                                              | Output bits<br>123456789ABCDEF                  | Code                                                                                                          | Bin<br>Nr.                                                                                  | Energy<br>(MeV)                                                           | Bin<br>Nr.                                                                                   | Energy<br>(MeV)                                                                                                                                         | Bin<br>Nr.                                                                                   | Energy<br>(MeV)                                                                                                                                                          | Bin<br>Nr.                                                                                   | Energy<br>(MeV)                                                                                                                                                          |  |  |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16 | 100000000000000<br>110000000000000<br>111000000 | 1<br>3<br>7<br>15<br>31<br>63<br>127<br>255<br>511<br>1023<br>2047<br>4095<br>8191<br>16383<br>32767<br>65535 | 9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24 | 0.4-1.8<br>0.9-2.3<br>1.5-3.0<br>2.0-3.5<br>2.8-5.5<br>4.5-7.3<br>6.3-9.5 | 33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48 | 7.8-16<br>16-22<br>22-28<br>28-33<br>33-45<br>45-55<br>55-68<br>68-83<br>83-90<br>90-110<br>110-150<br>150-178<br>178-220<br>220-268<br>268-298<br>298- | 57<br>58<br>59<br>60<br>61<br>62<br>63<br>64<br>65<br>66<br>67<br>68<br>69<br>70<br>71<br>72 | 46-66<br>66-90<br>90-100<br>100-130<br>130-180<br>180-220<br>220-270<br>270-320<br>320-350<br>350-430<br>430-580<br>580-700<br>700-860<br>860-1000<br>1000-1300<br>1300- | 81<br>82<br>83<br>84<br>85<br>86<br>87<br>88<br>89<br>90<br>91<br>92<br>93<br>94<br>95<br>96 | 130-170<br>170-200<br>200-240<br>240-330<br>330-400<br>400-500<br>500-600<br>600-700<br>700-800<br>800-1100<br>1100-1400<br>1400-1700<br>1700-2100<br>2100-2500<br>2500- |  |  |



BISA -

ASB



#### Results: the high energy section (ctd) - particle identification



#### EPT- discriminated particles and channel numbers

| Particle | Channels   |    |    |    |    |    |    |             |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|----------|------------|----|----|----|----|----|----|-------------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|          | LOW ENERGY |    |    |    |    |    |    | HIGH ENERGY |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| Lithium  | 73         | 74 | 75 | 76 | 77 | 78 | 79 | 80          | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 |
| Helium   | 49         | 50 | 51 | 52 | 53 | 54 | 55 | 56          | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 |
| Proton   | 25         | 26 | 27 | 28 | 29 | 30 | 31 | 32          | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 |
| Electron | 1          | 2  | 3  | 4  | 5  | 6  | 7  | 8           | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |

**BISA**-

IASB



## **Results:** the high energy section (GEANT4 with the final mechanical assembly)



GEANT4 space user workshop, Vanderbilt, May 10, 2004

**BISA**-

IASB

**CSR-**

UCL



GEANT4 model and incident protons





Single EPT module: redundant optic fiber coupling of the main scintillator and the anticoincidence scintillator.











IASB







# Validation of EPT calibration: efficiency calculation **Calibration:** channel number $\iff$ nominal energy interval efficiency $\mathcal{E}_{1}(E)$ $N_i = G \int_{-i}^{E^{i_{\max}}} \varepsilon_i(E) J_d(E, par_1, par_2, ..., par_n) dE$

Validation:

check capacity for particle discrimination evaluate actual energy interval for each channel





Electrons

Bin 25 66n 288 Bin 27 8m 28 Efficiency (X) Efficiency (3) Etticlency (3)  $\mathfrak{S}$ Efficiency 1 2 2 2 n г 0.01 0.1 1D 100 D.O1 0.1 10 100 0.01 0.1 1D 1CO D.O1 0.1 10 100 1 1 1 1 Incident energy (MeV) Incident energy (MeV) Incident energy (MeV) Incident energy (MeV) Bin 20 8m 30 Bin 31 6fin 32 e е P Efficiency (%) Efficiency (%) Efficiency (3)  $\mathfrak{E}$ 6 ø - **F** Efficiency ( 4 4 2 2 2 1D 100 D.O1 0.1 10 100 0.01 0.1 1D 100 D.O1 0.1 10 100 0.01 0.1 1 1 1 1 Incident energy (MeV) incldent energy (MeV) Incident energy (MeV) Incident energy (MeV) Bin 33 6 in 34 Bin 35 8m 38 Efficiency (%)  $\mathfrak{S}$ E E ¢ Efficiency ( Efficiency Efficiency 4 2 2 2 n c 0.01 0.1 1D D.O1 0.1 10 100 0.01 0.1 1D 100 D.O1 0.1 10 100 1 100 1 1 1 Incident energy (MeV) Incident energy (MeV) Incident energy (MeV) Incident energy (MeV) Bin 37 87an 3363 Bin 30 Bin 40 ε  $\mathbf{S}$ E E 6 Efficiency | Efficiency Efficiency Efficiency 4 2 2 2 C г 0.01 0.1 1D 100 D.O1 0.1 10 100 0.01 0.1 1D 100 D.O1 0.1 10 100 1 1 1 1 Incident energy (MeV) incldent energy (MeV) Incident energy (MeV) Incident energy (MeV) Bin 41 8 in 42 Bin 43 87in 44 Efficiency (%)  $\mathbf{E}$ E  $\mathbb{E}$ 6 Efficiency ( Efficiency ( Efficiency 4 2 2 2 2 n г 0.01 0.1 1 1D 100 D.O1 0.1 10 100 0.01 0.1 1 1D 100 D.O1 0.1 1 10 100 1 Incident energy (MeV) Incident energy (MeV) Incident energy (MeV) Incident energy (MeV) Bin 4B Bin 45 87m 48 Bin 47 e Efficiency (%) Efficiency (3) Efficiency (%) S 6  $\epsilon_{48}$ 12 Efficiency ( 4 г 0.01 0.1 1 1D 100 D.O1 0.1 1 10 100 0.01 0.1 1 1D 100 D.O1 0.1 1 10 100 Incident energy (MeV) Incident energy (MeV) Incident energy (MeV) Incident energy (MeV)

B I S A -I A S B



GEANT4 space user workshop, Vanderbilt, May 10, 2004

CSR-

UC

- particles

Z

BISA-

ASB



GEANT4 space user workshop, Vanderbilt, May 10, 2004

**CSR-**

UC

\_ithium

**BISA-**

ASB

## **EPT design methodology and GEANT4**

The outstanding particle discrimination capacity is guaranteed if the « digital » modules are more than 90% efficient.

Silicon detectors could be adequate ... as in SAMPEX/PET... but their mechanical strength may be a problem for large sensitive area.

![](_page_18_Picture_3.jpeg)

BISA-

Several other kind of modules were tested before our final selection

However, the EPT is the result of a design methodology extensively based on the GEANT tool and the physics (energy losses, angular distributions, straggling,...) inside it, not only on engineering skills.

The coupling between the scintillator signal and the photonics readout was experimentaly tested. However GEANT4 based simulation may bring some improvment to implement into future models.

![](_page_18_Picture_8.jpeg)

#### Summary

The Energetic Particle Telescope (EPT) was designed and optimized by extensive use of Monte-Carlo simulation tools and inbeam tests of its components

Reported (numerically evaluated) features:

- outstanding particle discrimination capability
- high data acquisition rates due to digital operation mode
- almost no background counting
- extended energy range covered by a single instrument

The construction of the EPT is underway.

![](_page_19_Picture_9.jpeg)