
The High Radiation Anisotropy Composition and Electron Spectrometer
Dennis K. Haggerty
The Johns Hopkins University Applied Physics Laboratory
11100 Johns Hopkins Road
Laurel, MD 20723-6099
240-228-7886
dennis.haggerty@jhuapl.edu

The High Radiation Anisotropy Composition and Electron (HiRACE) spectrometer 
hockey puck-size Time-of-Flight (ToF) spectrometer
ions ( 15 keV – 3 MeV) and electrons (30 keV – 1 MeV)
• Collimator assembly 
• ToF section
• Solid State Detector (SSD) array
• Shielding system  

GEANT4 simulations: 
• Shielding design
• Ascertain the background rates 
• Estimate the effect of penetrating particles on the detectors and optical systems 
• Determine the geometrical factors and efficiencies 
• Determine detector and foil thicknesses
• Estimate the radiation doses for mechanical and electrical components
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Simulation of energy deposited in the SSD due to a 
~91 keV (top) and a ~125 keV (bottom)  electron 
beam.  A percentage of the incident electrons will 
trigger channels lower than the incident energy 
because some electrons scatter out of the SSD. 

Main
detector

Anticoincidence
detector



Ei (keV)

0.001

0.010

0.100

1.000
DE0
DE1
DE2
DE3
DE4
DE5

110
4

102
10

3
10

The channel response function gκ(Ei) shows the probability that an 
electron will be measured in a particular EPAM channel.  

This simulation was done without the “anti” detector  
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The simulated electron intensity (solid lines) and non-scattered intensity (dashed 
lines) of each EPAM deflected electron channel.  The flux function is based on a 
gaussian injection in time at the Sun and a power-law spectrum in energy 



The channel response function shows the probability that an electron will be 
measured in a particular EPAM channel with (solid) and without (dots) the 
anticoincidence detector.



Schematic of the LEMMS sensor showing the Low Energy (left) and the High 
Energy (Right) sections. 
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Energy loss histograms from two discreet electron beams with an incident energy 
of 750 keV (left panel) and 1 MeV (right panel).  The ordinate shows the number 
of electrons while the abscissa shows the energy loss in keV.  Note that while 
detectors D3a and D3b are two distinct detectors, they are logically coupled in 
the LEMMS electronics system. 



Comparison between GEANT4 Simulations and Calibration runs for two 
different threshold levels.  
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The LEMMS electron channel response with a D11 threshold of 102 keV 
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Schematic of the HiRACE spectrometer, based on MESSENGER EPS
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A cross section of the HiRACE spectrometer which highlights the TOF 
functionality.

The optical simulations are currently being done with SIMION.

Question:  Does GEANT4 currently support the low energy surface physics 
required to simulate the “production” of these low energy secondary electrons?
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Left shows a top view of the HiRACE spectrometer with the orientation of the 
SSD array.  Right shows a schematic of a SSD to be used on HiRACE.



For your amusement pictures of the
Collimator assembly development:



For your amusement pictures of the
Collimator assembly development:



A completed HIRACE collimator assembly



Solid State Detector array development
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Combined Collimator
DMA, PCB, and SSD array
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Time for the FUN.

Top shielding plate not vised



3 MeV monoenergetic electron beam:  Symmetrical as expected

Side
Lobes



Monoenergetic 3 MeV proton run.

Energy dispersion in foil covered detector Side lobes clearly observed



GPS Proton power law input



TBD on the HIRACE spectrometer.

• Accelerator test.  This will be done @ Berkeley.  Multiple angles at 
various points on the system (scheduled for this Summer)
• Summer intern will assist in Future simulations
• Add optical elements in G4 (perhaps even potentials?)
• Use calibration data obtained at accelerator test and correlate with 
GEANT4 simulations
• Use GEANT4 to improve the shielding system
• Second accelerator test with improved shielding system
• Determine Geometrical factors, background rates, etc… 
• Publish results of simulations, combined with calibration data


