Highlights From The SEPTIMESS Project

Fan Lei on behalf of the SEPTIMESS collaboration

11-05-2004

SETPTIMESS

Space Energetic Particle Transport and Interaction Modelling for ESA Science Studies

An ESA funded project (Contract No. 16339/02/NL/FM)

- Consortium:
 - QinetiQ: prime contractor
 - Imperial College
 - University of Southampton
 - INFN (Genova)/CERN
 - University of Geneva
 - University of Burn
- Started in 09/02, and last for 30 months.

Key Personnel

- ESTEC/ESA:
 - Petteri Nieminen
- QinetiQ:
 - Fan Lei, Pete Truscott, Clive Dyer, Ramón Nartallo
- Imperial College:
 - Henrique Araújo, Peter Wass, Alex Howard, Tim Sumner
- University of Southampton:
 - Dave Wallis, Tony Bird, Tony Dean
- INFN (GE)/CERN:
 - Maria Grazia Pia, Sussana Guatelli, Andreas Pfeiffer
- University of Geneva:
 - Vladimir Grichine, Simone Gilardoni, Alain Blondel

Qineti

- University of Bern:
 - Laurent Desorgher, Erwin Flüeckiger

Main Study Objectives:

- Review the potential energetic particle radiation effects on payloads of future ESA missions, science missions in particular.
- Identify radiation transport analysis requirements to quantify those effects and thereby reduce risks for these missions.
- Develop Geant4 based applications for quantifying the specific radiation effects.

Main Activities (I):

Review of radiation effects to future ESA science missions:

- Radiation environments
- Radiation as background noise and potential damage to the scientific instruments
- Possible method for quantifying such effects

Status: completed

Major Activities (II):

Geant4 Developments:

- Low energy proton scattering at grazing incident angles: G4FirsovScattering (completed).
- Improvements to Atomic relaxation and Radioactive decay physics (on-going).
- Utilities and tools:
 - Hadron data format and data set (completed).
 - Statistic testing toolkit (completed).
 - Design iteration of G4GeneralParticleSource (completed).

Major Activities (III):

- Mission specific Geant4 simulations
 - XMM-Newton (completed)
 - INTEGRAL (on-going)
 - LISA (completed)
 - SMART-2 (completed)
 - Bepi-Colombo (completed/on-going)
- Other Geant4 applications
 - Atmocosmics (completed)
 - Magnetocosmics (completed)
 - Advanced Example on Radioactive Decay (on-going)

JinetiQ

List of Missions Reviewed

- Mercury Orbiter/Bepi-Colombo
- Solar Orbiter
- GAIA
- LISA
- Eddington
- Darwin
- XEUS

- FIRST-Herschel
- Planck
- Rosetta
- JWST
- SMART-1
- Mars Express
- Galileo (GSTB)

Technical Report: <a href="http://reat.space.qinetiq.com/septimess/sep

G4FirsovScattering: proton scattering at incidence angles

Firsov formulated the scattering angle distribution for grazing incidence ions in the 60's (Soviet Physics – Doklady, Vol. 11, No. 8, 1967)

$$p(\varphi,\theta) = \frac{3}{2\pi} \frac{(\varphi\theta)^{3/2}}{\varphi(\varphi^3 + \theta^3)}$$

where ϕ is the proton incident angle and θ the scattering angle

G4FirsovScattering vs G4MutilpleScattering

Incident angle randomly distributed between 0 - 1 degree

QinetiQ

XMM-Newton revisited: geometry

Introducing G4SurfaceProperty to The mirror surface

XMM-Newton: proton propagation efficiency

QinetiQ

XMM-Newton: EPIC proton spectrum

New result is ~ 5x higher @ 100 keV

LISA Laser Interferometer Space Antenna for Gravitational Wave Detection

- @ ESA/NASA Mission
- @ Launch 2011/12
- @ 1 AU Solar Orbit
- @ 3 Spacecraft Constellation
- @ 5 Mkm Baseline
- Q 2 Test Masses/Spacecraft

LISA Pathfinder (SMART-2)

- Ø Drag-Free Technology DemonstratorØ L1 Libration Point
- @ 2 Test Masses, 30 cm apart
- @ LTP (ESA) + DRS (NASA) Sensors
- @ Launch 2007
- Q UV photoelectric discharging

Test-Mass Charging

□ Requirements (0.1 mHz-0.1 Hz)

- Accel. noise $< 4x10^{-16} \text{ m/s}^2/\text{Hz}^{1/2}$
- Pos. accuracy $< 1 \times 10^{-9} \text{ m/Hz}^{1/2}$
- TM attitude $< 4 \times 10^{-7} \text{ rad/Hz}^{1/2}$

 $\Box \text{ Lorentz forces} \\ \mathbf{a} = \frac{\bar{Q}t}{m} \mathbf{v} \times \bar{\mathbf{B}} + \frac{\delta Q}{m} \mathbf{v} \times \bar{\mathbf{B}} + \frac{\bar{Q}t}{m} \mathbf{v} \times \delta \mathbf{B}$

Coulomb forces

$$F_k = -\sum_i \frac{\partial U_i}{\partial k} = \frac{1}{2} \sum_i \frac{\partial C_i}{\partial k} V_i^2 + \frac{Q^2}{2C^2} \frac{\partial C}{\partial k} - \frac{Q}{C} \sum_i V_i \frac{\partial Q}{\partial k}$$

LISA Geant4 Geometry Model

- § S/C: LISA Solid Model (GSFC/NASA)
- ~200 placed volumes (85% total mass)
- Q LTP IS: CAD (Carlo Gavazzi Space)
- e 46 mm cube test mass, YZ injection

LTP/SMART-2 G4 Geometry Model

- @ S/C: CAD (Astrium Germany/UK)
- ~400 placed volumes (80% total mass)
- Q LTP IS: CAD (Carlo Gavazzi Space)
- @ 46 mm cube test mass, YZ injection

Radiation Environment

G4GeneralParticleSource (GPS)

Geant4 Physics Processes

Most G4 physics, including latest developments

Electromagnetics

 E_{th} = 250 eV hIonization: δ -ray production and mean excitation energy

Photo/Electronuclear

Hadronics

Intra-nuclear cascades for protons and light ions

Decays

Hadronic Models

Particle	Model	Emin	Emax	
	G4PreCompound	0	70 MeV	
p, n	G4BinaryCascade	65 MeV	6.1 GeV	
	G4QGSP	6 GeV	100 TeV	
,	G4BinaryCascade	0	1.5 GeV	
π+, π-	LEP	1.4 GeV	6.1 GeV	
	G4QGSP	6 GeV	100 TeV	
d 4 a	LEP	0	100 MeV	
α, ι, α	G4BinaryLightIonReaction	80 MeV	10 GeV/n	
³ He, GenericIon	G4BinaryLightIonReaction	0	10 GeV/n	
\mathbf{K}^+ $\mathbf{K}^ \mathbf{K}_{}$ \mathbf{K}_{+-}	LEP	0	6.1 GeV	
$\mathbf{K}, \mathbf{K}, \mathbf{K}_{0L}, \mathbf{K}_{0S}$	G4QGSM	6 GeV	100 TeV	
$\underline{\mathbf{p}}, \underline{\mathbf{n}}, \Lambda, \underline{\Lambda}, \underline{\Omega}^{-}, \underline{\Omega}^{-},$	LEP	0	25 GeV	
$\Sigma^{\text{-}}, \underline{\Sigma^{\text{-}}}, \Sigma^{\text{+}}, \underline{\Sigma^{\text{+}}},$		25 CeV	10 TeV	
$\Xi^0, \underline{\Xi}^0, \Xi^-, \underline{\Xi}^-$	ΠΕΡ	25 Gev		
π ⁻ , K ⁻	G4AbsorptionAtRest			
<u>p, n</u>	G4AnnihilationAtRest			
n	G4LCapture			
n	G4LFission			
All hadrons	G4LElastic	0	25 GeV	

LISA Results

primary	solar	GCR fl	ux	timeline				
particle	activity	Φ , /s/cm ²	Φ, %	N ₀ (x10 ⁶) CPU, days		T, s	N ₀ /N _Q	
protons		4.29	92.0	121.1	150	200	2189	
He-4	min	0.315	6.8	14.4	12	321	1002	
He-3		0.0591	1.3	14.1	12	1683	1073	
Το	Total		100	149.6	174	—	419	
protons		1.89	91.9	53.3	70	200	1889	
He-4	max	0.142	6.9	9.3	11	462	849	
He-3		0.0236	1.1	8.0	10	2402	928	
Το	tal	2.06	100	70.6	91	_	359	

- **CERN LSF Cluster**
- 2.2x10⁸ Events
- 200 s exposure time

- Solar minimum
 R~100 +e/s
 S_R=34.6 +e/s/Hz^{1/2}
- Previous G4 work
 R=58 +e/s
 S_R=23 +e/s/Hz^{1/2}

primary	solar	ТМ О			TM 0 TM 1		
particle	activity	R, e/s	σ _м , e/s	S _R ,e/s/√Hz	R, e/s	σ _м , e/s	S _R ,e/s/√Hz
protons		79.5	1.6	30.0	82.3	1.6	30.4
He-4	min	14.5	0.6	14.9	15.3	0.6	15.5
He-3		2.15	0.1	5.6	2.07	0.1	5.7
Tot	tal	96.2	1.7	34.0	99.7	1.7	34.6
protons		35.6	1.2	23.8	39.4	1.3	25.4
He-4	max	7.1	0.4	12.4	7.0	0.4	12.8
He-3		0.90	0.06	3.9	0.89	0.06	4.0
To	tal	43.6	1.3	27.1	47.3	1.4	28.7

SMART-2 Results

primary	solar	GCR flux		timeline				
particle	activity	Φ , /s/cm ²	Φ , /s/cm ² Φ , % N ₀ (x10 ⁶) CPU, days		T, s	N ₀ /N _Q		
protons		4.29	92.0	142.6	143	235	2096	
He-4	min	0.315	6.8	22.0	22	491	958	
He-3		0.0591	1.3	33.1	33	3958	1010	
To	Total		100	197.6	198	—	398	
protons		1.89	91.9	59.4	59	222	1758	
He-4	max	0.142	6.9	8.8	9	440	798	
He-3		0.0236	1.1	31.8	32	9524	874	
Το	tal	2.06	100	99.9	100	_	337	

- **CERN LSF Cluster**
- @ 3x10⁸ Events
- >200 s exposure time

- Solar minimum
 R~88 +e/s
 S_R=35.4 +e/s/Hz^{1/2}
- Solar maximum
 R~43 +e/s
 S_R=28.2 +e/s/Hz^{1/2}

primary	solar		ТМ 0			TM 1	
particle	activity	R, e/s	σ _м , e/s	S _R ,e/s/√Hz	R, e/s	σ _м , e/s	S _R ,e/s/√Hz
protons		71.7	1.4	31.3	68.9	1.4	30.3
He-4	min	14.2	0.5	15.5	13.7	0.5	15.2
He-3		2.22	0.06	5.0	2.06	0.06	5.5
Tot	tal	88.1	1.5	35.4	84.7	1.5	34.3
protons		33.5	1.1	24.1	34.8	1.2	25.1
He-4	max	7.1	0.4	12.7	7.2	0.4	12.1
He-3		0.85	0.03	4.2	0.85	0.03	1.1
Tot	tal	41.4	1.2	27.6	42.9	1.3	28.2

Conclusions

LISA

solar activity	c	harging rat	e	charging fluctuations				
	R, e/s	σ _τ , e/s	δ /s	S _R ,e/s/√Hz	S _δ ,e/s/√Hz	S _D ,e/s/√Hz	S⊤,e/s/√Hz	R _{eff} , +e/s
solar minimum	99.7	1.7	60	34.3	15.5	14.1	40.2	807
solar maximum	47.3	1.4	36	27.9	12.0	9.7	31.9	509

The MC results are similar for LISA and LTP/SMART-2 (same IS!)

The existing Charge Management System is adequate for the solar quiet charging rates as well as for most SEP events

MC charging rates ~2x higher than in previous G4 work (Araújo *et al.* 2003, CQG 20, S311), and ~10x higher than in original Geant3 work with a smaller test mass (Jafry & Sumner 1997, CQG 14, 1567).

Kinetic electron emission can affect charging rates and fluctuations.

Coulomb acceleration noise 2x higher than in previous G4 work, but still acceptable ($4x10^{-16}$ m/s²).

Solar flare events are a concern. Small but frequent SEP events will appear in the LISA science data; a radiation monitor should be considered to help data analysis!

INTEGRAL Simulations

- Geant4 INTEGRAL Mass Model
 - Current mass model based on G3
 - ~ 300,000 volumes
 - G3toG4 dose not work well here
 - Re-implemented in G4/C++, ~ 20,000 lines of code
 - SPI: 19 HPGe array, shield by ~ 900 kg BGO
- Simulations (on going)
 - In-flight background higher than predicted (G3 + others)
 - Continuum spectra: veto on/off
 - Gamma ray lines: Isotope production and radioactive decay

INTEGRAL G4 Mass Model

SPI Continuum background

Old Simulations: Geant3+ GCALOR+ ORIHET+ DECAY

Geant4 Sims. On-going

SPI background: veto on/off

QinetiQ

SPI: Gamma ray background lines

Rate [1/sec/keV]

MAGNETCOSMICS

Geant4 based application to

- Calculate the trajectory of cosmic ray particle in the Earth magnetosphere
 - Visualisation of the trajectory and field lines
- Rigidity cut-off calculation
 - Dynamical out field model
- Additional option of Bulirsh-Stoer integration method
 Code and Documents:

http://reat.space.qinetiq.com/septimess/magcos

Tracking of cosmic ray in the magnetosphere

Field Model: IGRF + Tsyganenko-2001

Gyration, bounce and drift

500 keV proton (a) 5.5 Re

Cutoff rigidities and asymptotic directions

Reverse time trajectory tracing

Computation of rigid cutoff

Asymptotic direction

Cutoff rigidities

QinetiQ

Asymptotic directions

Alt.: 20. km Lat: 46.55 N Long:7.98 E March 26, 1995, 18 h

Dynamic rigidity cut-off calculations

The lower panel of this figure represents the time variation of the main (blue line) and effective (red line) cutoff rigidities at the Jungfraujoch neutron monitor station, Switzerland, for the March 26th 1995 magnetic storm.

The top panel represents the variation of the Dst index. In this simulation the magnetosphere was modeled by the IGRF and the Tsyganenko 2001 models.

Cutoff vs Direction

400 km, 50 N, 0 E Tsyganenko 89 25 March 1995 0 UT

Azimuth Angle [degree]

QinetiQ

Cutoff Rigidities Map

IGRF 82

ATMOCOSMICS

- Propagation of cosmic rays through the Earth's atmosphere
- With or without the magnetic field
- Build-in atmosphere model
- Build-in model for cosmic-ray radiation model
- Visualisation
- Computing flux of secondaries at any altitude
- Energy deposited vs altitude
- Cosmogenic nuclides production

Code and Documents:

http://reat.space.qinetiq.com/septimess/atmcos

Atmosphere

- Geometry:
 - Divided in successive homogenous layer
 - Flat or spherical layers
- Composition model:
 - MSISE90 and NRLMSISE2000
 - Table model
 - Oxygen, Nitrogen, Ar,.....

Primary incident particle generator

- Derived from G4GeneralParticleSource (GPS)
- User defined spectrum
- Cut-off rigidity in function of direction or fixed
- Isotropic galactic cosmic ray proton and alpha particle
 - Solar minimum
 - Solar maximum
 - Modulation parameter (Garcia Munoz 1975)

Galactic proton flux at 1AU

QinetiQ

Physics

- Electromagnetic physics:
 - G4Std, G4LowEnergy
- Hadronic physics:
 - G4NeutronHP (neutron <20 MeV)
 - G4Precompound
 - G4Binary cascade, G4HETC
 - Bug #607
 - G4QGSP, G4LHEP,.....

Visualisation

2 GeV protons interacting with atmosphere

Simulated flux at 16 km (100 g/cm2)

Primary spectrum: galactic proton at solar minimum

QinetiQ

Simulated neutron flux (1-10 MeV)

Primary spectrum: galactic proton at solar minimum Rc=3.2 GV

GoF Toolkit

A project to develop a **statistical analysis system**, to be used in Geant4 testing

Main application areas in Geant4:

physics validation regression testing system testing

Provide tools for the **statistical comparison** of distributions

- equivalent reference distributions (for instance, regression testing)
- experimental measurements
- data from reference sources
- functions deriving from theoretical calculations or from fits

Interest in other areas, not only Geant4

Microscopic validation of Geant4 physics

http://www.ge.infn.it/geant4/TandA

Maria Grazia Pia, *INFN Genova*

Test beam at Bessy Bepi-Colombo mission

χ^2 not appropriate

(< 5 entries in some bins, physical information would be lost if rebinned)

Anderson-Darling

A_c (95%) =0.752

A.Mantero, M.Bavdaz, A.Owens, A.Peacock, M.G.Pia Simulation of X-ray Fluorescence and Application to Planetary Astrophysics, IEEE-NSS 2003

G4HDS: Geant4 hadronic data set

- G4HDS: data format for store and manage data such as cross sections of hadronic interaction in the Geant4 framework
- Will be used by HARP in its hadron productions data
- Comprehensive reference list of experimental hadron c-s data
 - A limited number of data set have been converted to G4HDS format
- Utilities for
 - input and update data
 - Retrieve and search
- SpaceHad01:Application developed to test Geant4 hadronic cross section evaluation

QinetiQ

All available from the Geant4 repository!

New G4GeneralParticleSource

- Design iteration
 - Split into 7 classes
 - Tree structured commands
- New feature
 - Multiple sources definition
- Bug fixing
 - Biasing
 - Integral spectrum
 - Beam profile
- Released in Geant4-06-01-ref-01 <u>http://reat.space.qinetiq.com/gps</u>

Summary (I)

- All instruments of future ESA science missions are susceptible to energetic particle radiation effects
- Geant4 is largely ready to face the energetic particle transport simulation demands from ESA future science missions, but
 - New physics will be required. E.g. for XUES
 - Scattering of charged particles in x-ray mirror system
 - Low energy threshold: < 50 eV
 - Charge transfer in pn-CCDs and DEPFETs
 - Thermal transfer in STJ array and TES
 - Geometry

...

Summary (II)

- Simulations of the test-mass experiments: novel application of G4, proved to be very demanding in physics.
 - Need experiments (data) to validate
 - Proved to be an very important tool in the mission design phase
- SINTEGRAL simulations will be a big challenge to Geant4, isotope production and radioactive decay in particularly.
- The statistical test toolkit, an invaluable tool not just to Geant4!

Summary (III)

- GPS: has been proved to be essential to Geant4 space applications and beyond.
- G4HDS: great for hadron physics validations; a foundation for the implementation of a c-s based process.
- Geant4 based tools for space application tools
 - MAGNETOCOSMICS: important application in radiation environment modeling. Will be used and made available by SPENVIS
 - ATMOCOSMICS: atmospheric radiation modeling for LEO missions and the study of terrestrial and atmospheric radiation effects

