
Turning GEANT Inside-Out:
A Python-GEANT4 Bridge

which Provides
Flexibility and Interactivity

Marcus Mendenhall
Vanderbilt University FEL Center

Marcus Mendenhall / Vanderbilt University FEL Center

Overview

• GEANT4 provides an excellent low-level toolkit for fast
computation of transport of moving particles

• Base language of GEANT4 is C++, which is needed for
speed

• C++ is a relatively lousy language for data management
• Much effort is needed to explicitly handle polymorphic data
• Attention is needed for object creation, deletion, and ownership
• All interaction done through limited Messenger classes

• Modern object-based scripting languages provide much
better functionality for setup and management

Marcus Mendenhall / Vanderbilt University FEL Center

Architecture
• Instead of compiled main() doing setup, then creating a

Session to handle user interaction, let the interactive
interpreter run the show

• Use Python shell, with all its power, as the interpreter
• Use SWIG to wrap all needed GEANT4 and User classes,

providing direct access to methods, instead of using
hand-written Messenger classes to expose pieces

• Extend SWIG wrappers with specialized tools
• Use Python threads capabilities to allow keyboard access

to multithreaded operations
• Use Python reference-counting object management to

take care of all housekeeping

Marcus Mendenhall / Vanderbilt University FEL Center

So What is SWIG?

• The Standard Wrapper Interface Generator
• Automatically translates C and C++ header files into complex wrapper

functions which allow various scripting languages to access compiled
code.

• Takes care of much data-type conversion, class management, etc.
• Knows a lot about C++ class structure.
• Needs only a very little bit of help typically to wrap most code.
• Can be given more information to generate helper code to fill in gaps

where the automatic wrappers are inconvenient.

• The long answer: see http://swig.sourceforge.net

Marcus Mendenhall / Vanderbilt University FEL Center

The Canonical GEANT World
main()

Instantiate

Session

Parse and dispatch

to individual

Messengers

Run

event

kernel

(blocking)

Primary Experimental Setup, no real-time activity in event processing, much information management

DetectorConstruction

(Builds Materials Lists and Geometries)

Typically, creates many objects with complex

dependencies. Specification of inter-related

objects is difficult in C++, and changes

require recompile.

UserPhysics

(Assigns processes to particles and parameters/models to processes)

Physics lists are extremely susceptible to duplication of processes when various

packaged lists are mixed & matched

Looking inside prepackaged lists takes a lot of poking around

Real-time action setup (these actions MUST be fast)

UserEvent

Handles Start
& end of Event

UserTracking

Handles Start
& end of Track

UserStacking

Controls ordering of
Tracks in Event

Hits

Keeps track of Energy Deposition

Digits

Keeps track of Virtual Electronics

Start Run

Modify Parameters

Sends M
essages

S
e
n
d
s
 M

e
s
s
a
g
e
s

Marcus Mendenhall / Vanderbilt University FEL Center

Typical Old-Style Material Setup
//Air
G4Element* elN = new G4Element("Nitrogen", "N", z=7., a= 14.01*g/mole);
G4Element* elO = new G4Element("Oxygen" , "O", z=8., a= 16.00*g/mole);

//G4Element* elGd = new G4Element("Gadolinium", "Gd", z=64.0, a=157.25*g/mole);
G4Element* elI = new G4Element("Iodine", "I", z=53.0, a=126.904*g/mole);
G4Element* elH = new G4Element("Hydrogen", "H", z=1., a= 1.0*g/mole);
G4Element* elC = new G4Element("Carbon" , "C", z=6., a= 12.00*g/mole);
G4Element* elCa = new G4Element("Calcium" , "Ca", z=20., a= 40.078*g/mole);
G4Element* elCl = new G4Element("Chlorine" , "Cl", z=17., a= 35.4527*g/mole);

G4Material* Air = new G4Material("Air", density= 1.29*mg/cm3, nel=2,
 kStateGas, 300.0*kelvin, 1.0*atmosphere);

Air->AddElement(elN, 70*perCent);
Air->AddElement(elO, 30*perCent);

// Tissue (Br12)
G4Material* br12 = new G4Material("BR12", density= 0.98*g/cm3,nComponents=6,

 kStateSolid, 300.0*kelvin, 1.0*atmosphere);
br12->AddElement(elC, 0.7037);
br12->AddElement(elO, 0.1693);
br12->AddElement(elH, 0.0961);
br12->AddElement(elN, 0.0194);
br12->AddElement(elCa, 0.0086);
br12->AddElement(elCl, 0.0020);

// Iodinated Tissue (5% DNA Thymidine replacement = 1.3 mg/g, guess 20% for here)
G4Material* br12iod = new G4Material("iodinated BR12", density= 0.98*g/cm3,nComponents=2,

 kStateSolid, 300.0*kelvin, 1.0*atmosphere);

br12iod->AddMaterial(br12, 0.995);
br12iod->AddElement(elI,0.005);

Marcus Mendenhall / Vanderbilt University FEL Center

The Pythonized GEANT World
Python

Shell

Run

event

kernel

(non-

blocking)

Primary Experimental Setup, no real-time activity in event processing, much information management

DetectorConstruction

(Builds Materials Lists and Geometries)

Uses Python native list semantics and object ownership to

construct hierarchical geometry without creating long lists of

pointers which end up abandoned or accidentally deleted early

UserPhysics

(Assigns processes to particles and parameters/models to processes)

Takes advantage of Python lists and dictionaries to automatically look out for

redundant addition of processes, and to iterate through particles. Can either use

prepackaged hadronic lists, or explicitly create lists in Python (or both)

Real-time action setup (these actions MUST be fast)

UserEvent

Handles Start
& end of Event

UserTracking

Handles Start
& end of Track

UserStacking

Controls ordering of
Tracks in Event

Hits

Keeps track of Energy Deposition

Digits

Keeps track of Virtual Electronics

Shell still running, use full power of Python language to interact directly with

Get/Set methods of user classes, without any Messengers. Can modify

behavior of running kernel interactively, since it is in separate thread.

In Separate Thread

Setup

Run

Analyze

Selected

Events in

Python code
terminate?

No

End Run Threadyes

S
e
n
d
 M

e
s
s
a
g
e
s

Marcus Mendenhall / Vanderbilt University FEL Center

General Setup (was main())
G4Sys=G4System()
print "Geant4 Core Version: "+G4Core.GetVersionString()
ranecu=G4Core.RanecuEngine()
G4Core.HepRandom.setTheEngine(ranecu)

myDetector=G4Core.PythonDetectorConstruction()
myEvent=G4Core.ExN02EventAction()
myGenerator=G4Core.ExN02PrimaryGeneratorAction()
myRunAction=G4Core.SimpleRunAction()
myTrackingAction=G4Core.T01UserTrackingAction()
mySteppingAction=G4Core.ExN02SteppingAction()
visManager = G4Core.ExN02VisManager()
G4Sys.SetActions(detector=myDetector, event=myEvent, generator=myGenerator,

run=myRunAction, tracking=myTrackingAction, stepping=mySteppingAction, vis=visManager)

baseSD=G4Core.ExN02TrackerSD(G4String("BaselineSD"))
G4Core.AddNewSensitiveDetector(baseSD)
tumorSD=G4Core.ExN02TrackerSD(G4String("TumorSD"))
G4Core.AddNewSensitiveDetector(tumorSD)

targetParams=dict(
tumorFullThickness=20.*millimeter,
worldFullHeight=100.0*millimeter,
skinFullThickness=150*millimeter,
tumorCenterDepth=20.0*millimeter,
boneCenterDepth=75.0*millimeter,
boneFullThickness=30.0*millimeter,
iodineFrac=0.5*perCent,
baseSD=baseSD, tumorSD=tumorSD)

worldFullLength, actualPositionTumor =CreateGeometry(**targetParams)

import RadiationPhysics
EM=RadiationPhysics.PenelopePhysics(secondaryCut=2.0*keV, useAuger=0, useFluorescence=1).Construct()
had=RadiationPhysics.DumbHadronPhysics().Construct()
G4Core.G4ProductionCutsTable.GetProductionCutsTable().SetEnergyRange(0.1*keV, 1.0*GeV)
G4Sys.SetActions(physics=EM) #just a formality
G4Sys.Initialize()

Marcus Mendenhall / Vanderbilt University FEL Center

Typical Python Materials Setup

BR12= MaterialWeight("BR12", density= 0.98*gram/cm3,
elements_list=(

("C", 0.7037), ("O", 0.1693), ("H", 0.0961), ("N", 0.0194), ("Ca", 0.0086), ("Cl", 0.0020)
)

)

BR12iod = MaterialMixture("BR12+%.1f%% Iodine"%(iodineFrac/perCent),
density=0.98*gram/cm3,
materials_list=(

(BR12, 1.0-iodineFrac),
("I", iodineFrac)

)
)

Bone=MaterialWeight("icru-44 bone", density= 1.92*gram/cm3,
elements_list=(

("H", 0.034), ("C", 0.155), ("N", 0.042), ("O", 0.435),
("Na", 0.001), ("Mg", 0.002), ("P", 0.103), ("S", 0.003),
("Ca", 0.225)

)
)

Real keyword arguments!

Arbitrary Length Lists

String formatting

Marcus Mendenhall / Vanderbilt University FEL Center

Geometry Setup in Python

solidTumor=UnionSolid("Bumpy Tumor",
G4Tubs(G4String("Dosed tumor"),

0., tumorFullThickness/2.0, worldFullHeight,
0.0*degree, 360.0*degree

),
G4Tubs(G4String("Dosed tumor bump"),

0., tumorFullThickness/4.0, worldFullHeight,
0.0*degree, 360.0*degree

),
pos=(0., tumorFullThickness/2.0, 0.)

)

logicTumor=LogicalVolume(solidTumor,
material=BR12iod, name="tumor", sensitive=tumorSD, color=(0,1,1)

)

logicTumor.SetForceSolid(1)

relativePositionTumor = Numeric.array((-skinFullThickness/2.0+tumorCenterDepth, 0, 0))
actualPositionTumor=Numeric.dot(RotationY(-90.0*degree), relativePositionTumor)

Placement(logicTumor, "tumor", logicSkin, pos=relativePositionTumor)

Helper class to manage ownership

Easy attachment of
SensitiveDetectors

Inline
VisAttributes

Marcus Mendenhall / Vanderbilt University FEL Center

G4RunManager, Exposed!

• Expose a little more of the RunManager so that more of
the run setup and termination can be executed in Python
• This allows one to run some events, move the ParticleGun, and then

run more, for example, to create diffuse (or other) sources
• Also, can use UserStacking or UserEvent actions to terminate the run

reversibly when an event arises which is ‘interesting’. This permits
fast but simple pre-analysis of events in compiled code, followed by
slower, flexible analysis in Python code. Run can be continued after
‘interesting’ event is processed.

Marcus Mendenhall / Vanderbilt University FEL Center

Run with AIDA & OpenDX
def run_series(thetalist=(-20,0,20), events=100000, sdBase=None, sdTumor=None):

global _running
_running=1
try:

if sdBase and sdTumor:
runcode=time.strftime("%Y%m%d.%H%M%S")
import AIDASupport #only import AIDA if we really need it!
import AIDA
tree=AIDASupport.AIDATree("", createNew=1, options="compress=yes")
dx=worldFullLength*0.5
chans=300
histfact=tree.GetHistogramFactory()
dc1Hits = histfact.createHistogram3D("Ionization_Map_1",1,

-dx,dx,chans,-dx,dx,chans,-dx,dx)
sdBase.SetXYZHistogram(dc1Hits)
dc2Hits = histfact.createHistogram3D("Ionization_Map_2",1,

-dx,dx,chans,-dx,dx,chans,-dx,dx)
sdTumor.SetXYZHistogram(dc2Hits)

else:
tree=None

G4Sys.SetupRun()

for theta in thetalist:
if not _running: break #someone else is sending us a message
gunPos=Numeric.array((0,0,-1.1*targetParams['skinFullThickness']/2.0))
gunPos=Numeric.dot(RotationX(theta*degree), gunPos)
myGenerator.SetGunPosition(Vector(gunPos))
myGenerator.SetGunAxis(Vector(actualPositionTumor-gunPos))
G4Sys.runMgr.DoEventLoopThreaded(events)

G4Sys.FinishRun()

if tree:
sdBase.UnsetHistogram()
sdTumor.UnsetHistogram()
hist2d1=histfact.projectionYZ("hist2d1", dc1Hits) #project down
hist2d2=histfact.projectionYZ("hist2d2", dc2Hits) #project down
final_plain=histfact.add("unenhanced", hist2d1, hist2d2)
scale=2.0
hist2d2.scale(scale) #adjust for DER
final_der=histfact.add("DER = %.1f enhanced"%scale, hist2d1, hist2d2)

for hist, basename in ((final_der, "DER_%.1f"%scale),
(final_plain, "unenhanced")):

vf=AIDA.vectorDouble()
AIDA.Convert2DHistToVector(hist, vf)
histbins=Numeric.array(vf, Numeric.Float32)

datafilename=basename+"."+runcode+"."
savehistfile=file(datafilename+"binary","w")
savehistfile.write(histbins.tostring())
savehistfile.close()
xax=hist.xAxis()
yax=hist.yAxis()

dxheader=create_dx_header_2d(datafilename+"binary",
xax.bins(), yax.bins(),
xax.binLowerEdge(0), xax.binWidth(0),
yax.binLowerEdge(0), yax.binWidth(0))

gf=file(datafilename+"general","w")
gf.write(dxheader)
gf.close()

finally:
_running=0

Marcus Mendenhall / Vanderbilt University FEL Center

How Hard is This?
• Simplest Case

• Rewrite main() as SetupGeant() so it ends where the session starts
• Run Gnumake to build libfoo.a where foo is the project name
• Generate a typically 20-line SWIG declaration to expose interesting

parts of user classes and run SWIG
• Run python setup.py to let distutils build the modules
• Enjoy!

• More real Pythonization
• Move Materials and Detector construction into Python
• Move Physics Lists into Python
• Eliminate Messenger classes, replacing with native Python access
• Move bits of RunManager loop into Python for event analysis

Marcus Mendenhall / Vanderbilt University FEL Center

Why?
• Code Maintainability

• Way too much effort required to do complex hierarchical object
management in C++. Almost every change results in memory leaks.

• Much less attention required to declaring types everywhere.
• Resulting code is much shorter, since Python does much of the work.

• Code Flexibility
• Only the gory low-level details of event handling, etc. live in compiled

code. Everything else can be changed in the interpreted layer.
• The SWIG-wrapped classes automatically expose all public class

methods, instead of only a few which Messengers usually expose.
• File I/O and management is very easy to change as needed.

• Speed of Development is MUCH better.

Marcus Mendenhall / Vanderbilt University FEL Center

Why? again: The Python Library

• The Python library provides extensive XML file parsing
capabilities, which will ultimately make interchange with
CAD easier.

• The library provides extensive web-interaction tools,
potentially making it easy to provide access to your
simulation via web-based tools, so remote users can
interact with your local experiment simulator to test out
concepts

Marcus Mendenhall / Vanderbilt University FEL Center

Conclusion (?)
• The conclusion is that this is not at all concluded!
• The presentation is really a demonstration of a possible

future framework for much GEANT work.
• It is easily expandable to use new C++ classes, since

SWIG automatically does the work needed.
• It is easily expandable on the Python end to provide

extensive new management and analysis capabilities,
since Python is both a very powerful scripting language
and has an excellent library of tools bundled with it.

• We would like to work closely with the core development
team to see how to integrate this into a (not-too-far)
future GEANT toolkit.

