

Proposal of a Space Radiation Environment Generator interfaced to Geant4

S. Guatelli¹, P. Nieminen², M. G. Pia¹
²ESA-ESTEC, ¹INFN Genova

http://www.ge.infn.it/geant4/lowE/space

The experience with students at INFN Genova...

- Alfonso works on Bepi Colombo, X-ray fluorescence
 - he needs solar X-ray spectra as an input to his Geant4 simulation
- Simona works on Bepi Colombo, PIXE
 - she needs solar proton spectra as an input to her Geant4 simulation
- Susanna works on dosimetry for interplanetary manned missions
 - she needs Galactic Cosmic Ray and Solar Particle Event spectra as an input to her Geant4 simulation
- Barbara works on Geant4-DNA
 - she needs all the above (and more) for her Geant4 developments
- A lot of cut-and-paste of code exchanged among four students, working in the same room...

...how many people have similar needs?

...a proposal

An open-source, comprehensive primary generator for the space radiation environment in the solar system interfaced to Geant4

- A collaborative project
 - make common solutions available to common needs
- An ambitious project...
 - incremental and iterative process is mandatory!
 - complementary expertise needed: astrophysics + software

Open source

Open system

- to contributions from experts from the scientific community
- to evolution of software, following the evolution of physics modeling and availability of experimental data
- to extension through new developments
- to users providing valuable feedback for improvement

Open source

- transparency of the models, assumptions, approximations, data sources
- the user has control of the ingredients of his/her application, contributing to the reliability of the final results from his/her software

Comprehensive

- Variety of physics models available
- Evolution of models and data
 - Offer the user the choice among available models
- Scope to be defined through an analysis of the user requirements
 - content & capabilities
 - priorities
- Long term project
 - open to extension and evolution
 - incremental and iterative process

Primary generator: user view

- From the point of view of the user: functionality
 - to pick the spectra of particles to inject into a Geant4 simulation in a given configuration (location, solar cycle etc.)
 - to select the model(s) for the spectrum generation out of a set of options
 - to select models for scaling
- "Primary" PhysicsList approach
 - to select the primary spectra/models to generate
 - to provide some guidance to the configuration of the generator
- Multiple user interfaces are possible
 - if the system is well designed
 - to fulfill requirements for different usage in different type of studies

Physics content

To be thoroughly studied

- physics models
- experimental data

Models for

- solar X-rays
- solar event protons, α and electrons
- Jovian electrons and photons
- cosmic ray protons and α
- galactic X-rays and γ-rays

Local magnetospheric environment

- difficult to model
- good architecture should allow adding specialised models in later development cycles
- Specific expertise needed

Interfaced to Geant4

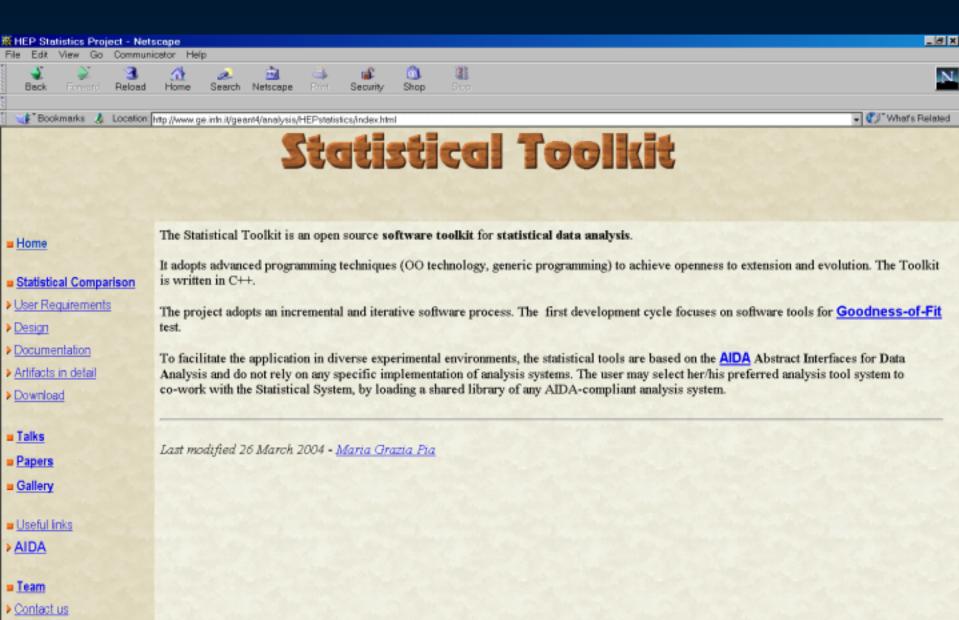
- Not a Geant4 implementation
 - common tool to address many use cases of Geant4-based simulation
- Component-based architecture facilitates usage in different environments
 - standalone
 - interfaced to Geant4
 - interfaced to other software systems
- G4VPrimaryGeneratorAction
 - user class
 - can **use** other components

Key issues

- A clear vision
- A solid architecture
- State of the art physics content
- Rigorous software process

Vision

- Current status: brainstorming, collect ideas from experts and potential users in the field
 - the purpose of this presentation...
- Input from many sources to be distilled
 - coherent picture of the project
 - clear objectives and priorities
- Identification of stakeholders


Architecture

- Key issue to build a software system expected to evolve over a large time scale
- Use case driven
- Component-based architecture
 - easy to interchange components
 - open to extension
 - facilitates maintenance

Software process

- Recognized as the key to success for a software project
 - quality of the software product
 - effective usage of the available resources
- Iterative and incremental
 - recommended by best practices in software development
 - essential for a project of such a broad scope, with extended time-scale and expected evolution of models and data

A similar example of a Toolkit motivated by Geant4, now living its own independent life...

Feedback form the scientific community

- Is there any interest for such a project?
 - as a potential user?
 - as contributing developer?
 - as a consulting expert on the physics models involved?
- What tools would you like?
 - User requirements to be collected from as wide as possible community
 - priorities to be evaluated
- Project open to collaboration from interested scientists