

GEANT4 and MCNPX Comparison of the Treatment of Displacement Damage Mechanisms in HgCdTe

<u>Bryan C Fodness</u>¹, Robert A Reed², Thomas M Jordan³, Christina Howe⁴, Jean-Marie Lauenstein⁵, Paul W Marshall⁶

- 1. NASA/GSFC-SGT Inc.
- 2. NASA/GSFC
- 3. EMPC

- 4. Vanderbilt University
- 5. NASA/GSFC-QSS Group
- 6. Consultant to NASA/GSFC

The Authors would like to thank James Webb Space Telescope for their support in this work

Outline

- Motivation
- Review of NIEL in Silicon
- NIEL Calculation Methodology
- Comparison of GEANT4 and MCNPX
- HgCdTe NIEL Results with Variance
- Implications for Damage in HgCdTe
 Detector Arrays
- Future Work

Motivation

- Bandgap engineered materials for optical detectors
 - HgCdTe and InSb for Infrared
 - ZnCdTe for X-Rays and Gamma Rays
- Science missions are requiring large format pixelized IR detector systems
 - i.e. James Webb Space Telescope
- Recent test data in HgCdTe has shown degradation (hot pixels) at relatively low fluence

Displacement Damage?

Damage Mechanism

P.W. Marshall and C.J. Marshall, Notes from 1999 IEEE Nuclear and Space Radiation Effects Conference Short Course

19 May 2004 Presented by Bryan Fodness, NASA/SGT Inc, at GEANT4 Space User's Workshop, Vanderbilt University

Review of NIEL Calculation Methods in Sensors

- Analytic (Burke et al. 1987)
 - Uses moment generating functions to approximate variance in damage energy spectrum
- CUPID Monte Carlo (Dale et al. 1994)
 - Tracks individual particle reactions
 - Calculates the damage energy directly
- Hybrid (Jun et al. 2003)
 - Coulombic using Analytic
 - Nuclear Reactions using Monte Carlo (MCNPX)
- Our work extends the Hybrid approach to include variance of NIEL in HgCdTe

NIEL in Hg_(1-x)Cd_xTe, x=0.3

HgCdTe vs. Si

19 May 2004 Presented by Bryan Fodness, NASA/SGT Inc, at GEANT4 Space User's Workshop, Vanderbilt University

Comparison for Cadmium Bertini Cascade

Comparison for Tellurium Bertini Cascade

G4 Models-Nuclear Elastic

G4 Models-Nuclear Inelastic

G4 Models-Nuclear Elastic

G4 Models-Nuclear Inelastic

NIEL in GaAs (A Little History)

Device Response Does Not Always Follow NIEL!

JWST Mission: Proton Environment

19 May 2004 Presented by Bryan Fodness, NASA/SGT Inc, at GEANT4 Space User's Workshop, Vanderbilt University

Equivalent Test Fluence Issues

$$\Phi_{eq}(E_T) = \frac{\int S_{NIEL} \frac{d\Phi}{dE} dE}{S_{NIEL}(E_T)}$$

- Assumes the average damage follows NIEL
- Microdosimetry is energy dependent!

Inelastic Recoil/Damage Energy

- 63 MeV protons in HgCdTe
- Energy histogram including all reaction products
- The recoil energy is part ionizing and part nonionizing

1

Damage Energy Distribution

Damage Energy Distribution

Damage Energy Distribution

Damage Energy Distribution

19 May 2004 Presented by Bryan Fodness, NASA/SGT Inc, at GEANT4 Space User's Workshop, Vanderbilt University

Damage Distributions in HgCdTe

19 May 2004 Presented by Bryan Fodness, NASA/SGT Inc, at GEANT4 Space User's Workshop, Vanderbilt University

Conclusion

- Calculated NIEL for short, mid, and longwave HgCdTe material compositions
 - Readily extendable to other materials and compositions
- Demonstrated technique to assess recoil spectrum behavior
 - Captured and analyzed full recoil spectra details
 - Revealed importance of damage mechanisms
- Showed importance of damage energy distribution in high Z materials
- Future work will provide comparisons of measured array damage