Lidar Measurements of Metal Atoms in the Middle Atmosphere: Plans for Detection of Space Debris Impact

Michael Gerding Robin Wing Josef Höffner Gerd Baumgarten Claudia Stolle

e-mail gerding@iap-kborn.de Leibniz-Institute of Atmospheric Physics, Kühlungsborn, Germany

Photo: Gerd Baumgarten

Sounding of the atmospheric metal layer by lidar

Gerding et al., Lidar measurements of space debris metals

Lidar elastic backscatter profiles

Photon budget:

- laser emission: 10¹⁸ photons / pulse
- 90% exported to space
- 10% scattered below 20 km
- 0.01% scattered between 20-100 km

Data products:

- Air density variations
- Temperature
- Wind
- Aerosol load
- Metal densities

Ni observations at Kühlungsborn/Germany (54°N)

Gerding et al., Lidar measurements of space debris metals

600

Lidar soundings of different metals

Plane et al., Chem. Rev., 2015

Additional observations:

- Lithium (Jegou et al., 1980)
- Nickel (Gerding et al., 2019; Wu et al., 2021)
- AlO upper limit (Plane et al., 2021)

About 10 stations still active.

→ Most metal lidars are dedicated to Na or Fe for Doppler temperature and wind soundings, not primarily for metal density measurements

Anthropogenic metals in the atmosphere

Schulz and Glassmeier, Adv. Space Res., 2021 Natural Anthropogenic El. Today Scenario 1 Scenario 2 injection Η 220C (0)0.2(0)0.5(0)1.0540.13,851 0 0.04(0)0.3(0)Mg 0.1(0)1.300807 (614) 131Al 211(161)2,467(1,877)Si 8 (0)76 (5)2511.654(15)S 513Ti (754)7 (100)52171 (2,459)7 Cr (20)17 (47)48 (131)37 7 (22)Fe 36 (2)160(7)4962,295Ni (25)272(304)2389 (99)90 $\mathbf{2}$ 38 (1,747)106(4,923)Cu 15(720)Ge (776)37 (7,973)124(26, 435)0.54

Table 6: Anthropogenic and natural injection of some selected elements. Masses are given in t/yr. The numbers in parenthesis depict the percentage compared to the natural injection value in the respective row. Note that percentages larger than 100 % indicate that these elements are mainly of anthropogenic origin. For some elements, no anthropogenic abundances were calculated.

Further candid (not abundant	ates in cosmic dust)
Lithium	observed by lidar
Niobium	
Hafnium	
 Silver 	

• Lead

Metals exist in compounds and as atoms

Gerding et al., JGR, 2000

Daly et al., JGR, 2020

Gerding et al., Lidar measurements of space debris metals

Altitude variation of metal atoms and compounds

Gerding et al., Lidar measurements of space debris metals

Libriz Association

What do we need for space debris detection?

Geophysical prerequisites:

- Metals in atomic state (no metal compounds)
- Low natural abundance
- Anthropogenic abundance above detection limit

Technical prerequisites:

- Powerful and tunable metal resonance lidar, e.g. with dye laser
- Second metal resonance lidar, e.g. Na (for detection of natural trends)
- Calibrated wavelength meter
- Capabilities for long-term measurements (\checkmark)

Calibrated wavemeter (accuracy 0.2 pm / 500 MHz)

Candidate metals

Lithium:

- very low natural abundance
- detected >40y ago with specialized (powerful) lidar

Jegou 1980	IAP
800	30
2	30
0.5	0.5
30	70
100	90
4.15E-17	7.66E-17
9.96789E-11	2.1727E 10
	2.18
	Jegou 1980 800 2 0.5 30 100 4.15E-17 9.96789E-11

Candidate metals

Lithium:

- very low natural abundance
- detected >40y ago with specialized (powerful) lidar

Nickel:

- large anthropogenic source expected in future scenario
- natural layer recently observed by lidar

Copper, Hafnium, Niobium, Germanium, ...

- very low natural abundance, but is the anthropogenic injection large enough???
- not yet detected in mesopause region
- backscatter cross sections and chemical rates to be checked
- \rightarrow speculative

Aerosol particle size measurements by lidar

Gerding et al., Lidar measurements of space debris metals

"Rocket aerosol layers" in the stratosphere?

Gerding et al., Ann. Geo., 2003

- Layer observed mid-November 2000 to mid-February 2001
- 3 wavelength + depolarization
- Solid particles (soot, Al₂O₃, SiO₂, Fe) of 30 50 nm radius
- Total cloud mass (lower limit): 200 2000 kg

Fig. 2. Daily mean profiles of backscatter ratio for representative observations of the aerosol layer at each lidar station. Grey dashed: 355/353 nm (Andenes/Ny-Ålesund); solid black: 532 nm parallel polarised / non-polarised; black dashed: 532 nm perpendicular polarised; solid grey: 1064 nm.

Gerding et al., Lidar measurements of space depuis metais

Middle atmosphere aerosol detections by lidar R(532 nm) 52 Flensburg Meteor seen by Lidar in 1.20 50 rare observations at Kühlungsborn and 1.15 Kühlungsborn 48 ALOMAR/Norway 1.1085 Specialized lidar for MSP currently under 1.05 8 42 development 1.00 40 38 15 27 2019-09-12 [UT] NASA Oriole IV / Andoya Space 4 stage Kühlungsborn about 170 km vehicle: Talos + Terrier Mk 70 + Oriole + Nihka. away from trajectory ALOMAR RMR-LIDAR: System 1 / Oriole IV Rocket La 105 100 95 90 Altitude [km] 85 80 75 70 65 60 55 0830 0900 0930 1200 1230 1000 1030 1100 1130 Universal Time 2021-12-01 08:30:00 to 2021-12-01 12:30:00 Fiedler, 2023

Gerding et al., Lidar measurements of space debris metals

Observation of nearby ablation trails drifting through the lidar beam

Gerding et al., JGR, 1999

Gerding et al., Lid

ATMOSPHERIC

Summary

- IAP has a long tradition of metal layer observations at different sites
- Satellite debris is expected to form an additional metal source, partly exceeding natural sources
- Metals in atomic state can be observed by lidar if density and backscatter cross section is sufficiently large
- State-of-the-art metal lidar with wavelength calibration needed
- Plans for repeating the 1980ies observations of Lithium (spring 2024)
- Depending on results and funding
 - further survey of different metals
 - setup of independent lidar for undisturbed layers
 - decide about location for long-term observations
- Ongoing observations of middle atmosphere aerosols

Contact: Michael Gerding (gerding@iap-kborn.de)

