



### **Geant4 in ASTRO-H observatory**

#### Development

Masanobu Ozaki (ISAS/JAXA) <ozaki.masanobu@jaxa.jp>, H. Odaka, T. Sato and M. Asai



### Outline



- 1. ASTRO-H observatory
- 2. This year's highlights
  - Shielding Study
  - Activation Simulation
- 3. What's Next?



#### ASTRO-H



- 6th Japanese X-ray astronomy satellite
- Scheduled for launch in 2015
- 1.7t mass, 14m length
- LEO of 550 km altitude, ~30 deg inclination angle
- 1<sup>st</sup> end-to-end integration and test campaign in progress.



#### **ASTRO-H: detectors**



Four kinds of detectors:

- **SXS**: X-ray micro calorimeter, with <u>a</u> <u>few hundred Kg aluminum alloy</u>
- **SXI**: X-ray CCD camera with <u>thick Al</u> <u>shield</u> for < 10 keV band
- **HXI**: Si-strip and CdTe-pixel cameras for > 10 keV band, <u>also sensitive</u> for atmospheric neutron <u>backgrounds</u>
- **SGD**: Compton kinematics telescopes <u>with BGO active</u> <u>shields</u> for a few hundred keV band

Different photon detection mechanism and sensitivity for background radiation

-> MC simulation is essential







#### This year's highlights.

- HXI shielding study
- Activation study using Geant4 v.10

# CXB Shielding design for HXI





Geant4 in ASTRO-H observatory development



### **Activation Simulation**



- We succeeded in reproducing the activation by accelerator beam tests, using Geant4 database, without external library.
  - Much simpler structure than past, and easy to maintenance in future.



Geant4 in ASTRO-H observatory



### **Activation progress**



- We confirmed that the CdTe activation simulation, especially for continuum level, agrees quite well with the experiments. This should support to make the in-orbit BGD simulation reliable.
- Isomer lines were not represented well: Geant4 v.9 Hadronic processes don't generate them.



# Activation from CdTe detector







### What's Next?



 "Products" from the simulator have not been released yet, while expected from last year. At that time, the simulation efficiency, such as event biasing, was thought to be a key.



 Now, however, resources (of both human and computing) organization seems most important. This is not a technical but a management issue.





# (backup slides)

2014-05-27,28,29 / 10th Geant4 SUWS

Geant4 in ASTRO-H observatory development



### Geometry Description



- (SUWS8, 2011) Detectors and mirrors are placed in different logical spaces ("parallel world") from the spacecraft structure.
  - This allows the geometry overlaying between two spaces, and makes it easy to develop each component/structure incrementally.





### **Geometry Status**



 Now most of components are implemented with 95-99% mass precision, by hand.



Geant4 in ASTRO-H observatory development



### Simulator Dataflow



- I/O compatible with existing software
- Using external heritage: X-ray mirror ray tracing software





## I/O compatibility



- Charged particle background sources are separately described from photons.
- Accepts existing software's celestial body description.
- Outputs high energy astronomy's standard format "event FITS".







• We decided to use heritage for X-ray telescopes' ray tracing, because of strong request from the hardware developers.



# External software and Geant4



- The simulation uses external heritage ray tracing software for the mirror X-ray transportation.
  - → Consistency between official user tools and Geant4 simulation is automatically ensured.





### Beta release



ASTRO-H simulated image

- Beta version will be released to ASTRO-H science community, which is not familiar with Geant4.
- Beta version should
  - work on most of Mac OS X and Linux,
  - have simX 2.0 compatible I/O,
  - simulate all the detectors, and
  - be ready in one week or so.

