

Using SPENVIS for SUDA radiation modeling

Tech-X Corporation Sveta Shasharina, John Cary and Cory Perry

www.txcorp.com

5/29/2014

Thanks to:

- SUDA team in LASP, University of Colorado
- SPENVIS team (Neophytos Messios)
- G. Santin and N. Altobelli (access to GRAS)
- Hans Wenzel (FNAL: help with G4 and first viz)
- Guy Barrand (Open Scientist, AIDA installs)

Overview

- SUDA and Europa Clipper mission
- Radiation modeling for SUDA
 - Radiation environment
 - Geometry and materials
 - Radiation analysis
- Summary

Europa Clipper Pre-Project

- Clipper concept
 - 45 flybys of Europa with the orbit to minimize exposure to radiation, no landing
- NASA formally selects Clipper as down selected flagship to Europa (March 2013). Explicit in 2015 Obama's budget.
- Launch June 2022 arrives May 2024
- Mass ~3000kg, \$1.9B.

Europa Clipper Goals

- Study the surface (ice and atmosphere) composition
- Ocean habitability
- Geology
- Recon for a Lander

SUDA (SUrface Dust Analyzer): LASP University of Colorado

- Mass spectrometer maps the surface composition by analyzing ejecta particles and timing data to a particular feature on the surface
- Goal: understand if the ocean is chemically-rich and capable of providing both the elements and chemical energy needed for life
- The instrument has to be OPEN to catch particles and is particularly vulnerable to radiation
- Pre-project (one year)

SUDA: collects dust, focuses generated ions to the top of the detector where they convert to electrons and electrons get multiplied in the detector

Tech-X tasks

- Optimizing the geometry and materials of ion detector to minimize the total ionizing dozes on all sensitive elements and minimize the instrument weight
- Advantage: real geometries (vs modeling of slabs)
- Prepare for testing facility (which part of the energy spectrum is important?)
- Calculate proton fluxes on the detector (to figure out the noise/signal ration)
- Prepare for more-in-depth studies for the next stages of the project (this project is 14 weeks of work)
- We used SPENVIS ("light users") to get results quickly

Workflow

- Create differential fluences and fluxes from integral data given by ICEE
- Create gdml (shapes and materials)
- Run GRAS through SPENVIS
- Change gdml
- Run GRAS...

- 3 point interpolation as suggested by SPENVIS (ESA)
- Python (numpy)
 - Piecewise Cubic Hermite Interpolating Polynomial (pchip routine)
 - Bspline (bsplev routine)

Differential fluence depends on approximation (spenvis is higher!)

Differential fluence depends on approximation (spenvis's is higher!)

Interpolated differential e flux

Interpolated differential p flux

- Spherical source 13cm, angle to 45 degrees
- 1M protons and electrons
- Tabulated data
- Power law interpolation

Source particle type and spectrum

Environment: User defined

tabulated

*

Number of primary particles to simulate: 1,000,000 + Warning: Particle track visualisation will be disabled!

\$

Incident particle type: proton \$

Incident energy spectrum

Energy [MeV]	Fluen	ce/(Flux) [cm ⁻²	MeV ⁻¹ (s ⁻¹)]	
0.1 3.42444444e+10 0.2 4.12767857e+10 0.3 6.54147675e+09 0.5 7.36781216e+08 1 5.72228675e+07 2 7.26215686e+06 3 1.26978625e+06 5 1.87216752e+05 10 2.78136707e+04 20 6.50729069e+03 30 1.15381253e+03					
Interpolation type: power-law					
Angular distribution: omnidirectional +					
Minimum angle:		0		[degrees]	
Maximum angle:		45		[degrees]	

Reset Create GPS macro

Visualizing (100 e, closed shield, angle up to 45 degrees)

Visualizing (100 e, closed shield, angle up to 90 degrees)

Gdml generated by geometry definition tool and edited as needed

0 0 0	Geant4 tools: Geometry parameters				
https://www.spenvis.oma.be/htbin/spen	vis.exe/TXRAD				
	SPENVIS Pro Geant Geometry definition: Geome	4 tools Help			
Shape 1: Cylinder +					
Dimensions		Illustration			
Volume type: Material:	hollow ‡ tantalum ‡	y y			
Radius: Height:	0.1 [m] 0.500 [m]	Radius Z Height			
Radial wall thickness: Wall thickness (-Z):	1.000 [mm] 1.000 [mm]	Vigualization: Was formed			
Wall thickness (+Z):	1.000 [mm]				
Position relative to shape: world					
		Orientation			
		Rotation axis vector components: X: 0.000 Y: 0.000 Z: 0.000			
		Rotation angle: 0.000 [deg]			
<< Back Visualize Next >>					

GDML version (no shield)

Top view (no shield)

Can create complex materials for G4 (FR4)

<material name="epoxy resin" formula="C38H40O6Br4"> <D value="1.1250" unit="q/cm3"/> <composite n="40" ref="G4 H"/> <composite n="38" ref="G4 C"/> <composite n="6" ref="G4 O"/> <composite n="4" ref="G4 Br"/> </material> <material name="SiO2" formula="SiO2"> <D value="2.2" unit="g/cm3"/> <composite n="1" ref="G4_Si"/> <composite n="2" ref="G4 O"/> </material> <material name="Al2O3" formula="Al2O3"> <D value="3.97" unit="g/cm3"/> <composite n="2" ref="G4 Al"/> <composite n="3" ref="G4 O"/> </material> <material name="Fe2O3" formula="Fe2O3"> <D value="5.24" unit="g/cm3"/> <composite n="2" ref="G4_Fe"/> <composite n="3" ref="G4_O"/> </material> <material name="CaO" formula="CaO"> <D value="3.35" unit="g/cm3"/> <composite n="1" ref="G4_Ca"/> <composite n="1" ref="G4_O"/> </material>

<material name="MgO" formula="MgO"> <D value="3.58" unit="g/cm3"/> <composite n="1" ref="G4_Mg"/> <composite n="1" ref="G4_O"/> </material> <material name="Na2O" formula="Na2O"> <D value="2.27" unit="g/cm3"/> <composite n="2" ref="G4 Na"/> <composite n="1" ref="G4_O"/> </material> <material name="TiO2" formula="TiO2"> <D value="4.23" unit="g/cm3"/> <composite n="1" ref="G4 Ta"/> <composite n="2" ref="G4_O"/> </material> <material name="fibrous glass"> <D value="2.74351" unit="g/cm3"/> <fraction n="0.600" ref="SiO2"/> <fraction n="0.118" ref="Al2O3"/> <fraction n="0.001" ref="Fe2O3"/> <fraction n="0.224" ref="CaO"/> <fraction n="0.034" ref="MqO"/> <fraction n="0.010" ref="Na2O"/> <fraction n="0.013" ref="TiO2"/> </material> <material name="FR4"> <D value="1.98281" unit="q/cm3"/> <fraction n="0.47" ref="epoxy resin"/> <fraction n="0.53" ref="fibrous glass"/> </material>

Lip vs no-lip configuration: no significant ^{TECH-X} difference for p TID: ignore lip from now on

Shielding effects for e TID

Shielding effects for p TID

Summary

- Electrons > 30 MeV and protons > 20 MeV not important for TIDs
- Electronics are better off on the bottom of the shield, TIDs on the order of 0.5-1E+5 rad
- Al/Ta shield 2mm each works

Notes

- SPENVIS rules!
- Apologize for ignorance of bare G4
- Could not run GRAS locally (empty bins: do we need AIDA tool?)
- Could not load our GDML generated from CAD to SPENVIS (too big), need to run GRAS or Geant4 locally
- Bug in GRAS (TID is correct only for MeV: need to be normalized to Gy or rad and mass)
- Runs and data management are error prone (manual copying of files and looking through csv data)
- Choosing source (angle and radius) seems to be dark art