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* The material of this presentation is mainly from M. Kelsey (SLAC)
presentation at the Stanford Geant4 Tutorial 2014

- http://geant4.slac.stanford.edu/SL AC Tutorial | 4/Agenda.html
» Channeling Effect studies, courtesy of E. Bagli (INFN and

University Ferrara, [taly)

» Condensed Matter Physics I1s developed by CDMS experiment
physicists In collaboration with Geant4 developers
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* |ntroduction

* Phonon Physics In cryogenic-temperatures crystals

* Electrons/holes transport

* Channeling effect in crystals

 References

- Semiconductor phonon and charge transport Monte Carlo simulation
using Geant4 ; arXiv:1403.4984

- A model for the interaction of high-energy particles in straight and bent
crystals implemented in Geant4 ; arXiv: [403.5819



Solid-State Physics Developments
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A small group of Geant4 collaborators has been developing tools

to support some solid-state physics processes

Examples
available

e Flectron/hole production and transportation

e Phonon propagation and scattering

e Crystal channelling of charged particles

A common feature for these processes Is the need to define a
“lattice structure” (its numerical parameters) for a volume.

These tools are not yet (fully) ready for release; this presentation is
meant to be informational and perhaps inspirational.



Lattices
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» (Geant4 treats materials as uniform, amorphous

collections of atoms. Steps may be of any length, in any
direction, and some atom will be at the destination for

iNnteraction.

* We have introduced G4LatticelLogical asa

container to carry around parameters and lookup tables
for use with the phonon handling processes.

* There Is a singleton G4LatticeManager which keeps

track of lattices, and how they're associated with
materials and volumes.






Phonons in Geant4
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*See examples/extended/exoticphysics/phonons

* [he processes developed so far support acoustic phonons, which
are relevant for low-temperature (tens of mK) crystals.

* [hree polarization states are recognized
- Longrtudinal (G4PhononLong)
- Transverse "'slow speed” (G4PhononTransFast)

- Transverse “fast speed” (G4PhononTransSlow)

* Currently no production process. Use G4ParticleGun to insert

a phonon, which then propagates through volume.

- Production processes being developed



Phonon Propagation
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*Phonons are assigned a wave vector K for their phase velocity.

- Group (propagation) velocity V_)g s different due to the lattice

anisotropies.
-G4Latticelogical has a lookup table to convert between the two.



Phonon Interactions
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* [hree phonon processes are currently avallable, though may not
be fully functional.

*G4PhononScattering Ireats scattering of phonons off of

isotopic Impurities or lattice defects, changing direction and
randomizing the polarization state (mode mixing)

*G4PhononDownconversion Longitudinal phonons split in two,
eitherL=>LTorL=2>TT

*G4PhononReflection Should handle reflection of phonons of

volume boundaries; currently just kills.









Luke Phonon Production
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* Charged particles (including holes) drifting through crystal can
generate low-energy phonons along their trajectories.

*“Non-ionizing energy loss” can be calculated and stored by a few
standard processes.

* Code In development produces phonons which propagate as
described previously.
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Phonon Caustics In Germanium
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Generate phonons at the center of one face of a germanium
crystal, and measuring the distribution of phonons on the
opposite face. Focusing produces a pattern of causltics.

simulated experimental

Caustics in Ge collected Caustics in Ge observed
by phonons example by Northrop and Wolfe
PRL 19, 1424 (1979)
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Electron/hole Transport

* Energy-momentum relation (band structure) in Ge is highly
anisotropic
- Eight equivalent minima (right)

- Electron develops a mass tensor

- Mass tensor diagonalizes in coordinate system-

- Iwo components, M and m; , remain

L valleys of Ge

e Electrons travel along, scatter between valleys (minima)

e Holes drift along electric field lines
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Inter-valley Scattering
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Electrons/hole transportation
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* e/h transport code is developed mainly by CDMS experiment
community with G4 support

- http://cdms.berkeley.edu

- Not publicly released (yet)

* We do realize the very wide interest such simulation capabllities
have

- We believe extensions could be made to treat e/h in non-cryogenic
temperatures

- Lattice support in G4 could be extended to support other crystals
(currently limited to Ge)

* Additional manpower could significantly speed-up development
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Crystal Collimation or Channeling
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Developed by Enrico Bagli, U. Ferrara

Standard collimation

» Crystal can be used as a a)
primary collimator to
deflect particles of the halo
toward a secondary

collimator. TAL
» Main advantage Is the
hossibility to deflect the b)  Bent crystal collimation
beam out and reduce the
beam |osses. F
! N

TAL
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400 GeV/c proton beam on Si

W. Scandale et al,, Phys. Lett. B 680 (2009) 129

T 400 GeV/c protons

Si (110)
R=384m
L=1.94 mm

Goniometer
2 Jrad resolution

Strip detector x-z
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Nuclear Dechannelling Length

o1 AL
o b M\
W. Scandale et al., Phys. Lett. B 680 (2009) 129
Geant4 Channeling
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Channeling Efficiency vs. Angle
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Conclusions
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* Geant4 provides two examples that show a modified

transportation in crystal lattice

- Phonon transportation in cryogenic temperatures crystals
- Channeling effect of high energy particles
* Electron-hole code being developed by CDMS collaborators

* Motivated by "HEP style” requirements

- However e/h code could be extended to lower energies and higher

temperatures
* In all cases the introduction of the concept of a lattice structure

allowed these developments
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