
Multithreading capabilities	

in Version 10

Andrea Dotti (adotti@slac.stanford.edu)	

10th Geant4 Space Users Workshop	

27-29 May 2014 Jackson Center, Huntsville, Alabama, USA

mailto:adotti@slac.stanford.edu

Outlook

!

!

!

• Introduction: why we need multi-threading	

• Design	

• Results	

• Extensions

2

Introducion

G4 Ver 10.00.p01

The challenges of many-core era

• Increase frequency of CPU causes
increase of power needs

• Reached plateau around 2005	

• No more increase in CPU

frequency	

• However number of transistors /$

you can buy continues to grow 	

• Multi/May-core era	

• Note: quantity memory you can
buy with same $ scales slower	

• Expect:
• Many core (double/2yrs?)	

• Single core performance will not

increase as we were used to	

• Less memory/core	

• New software models need to
take these into account:
increase parallelism

4

CPU Clock Frequecy 1and usage: The Future of Computing Performance: Game Over or Next Level?	

DRAM cost: Data from 1971-2000: VLSI Research Inc. Data from 2001-2002: ITRS, 2002 Update, Table 7a, Cost-Near-Term Years, p. 172. Data from 2003-2018: ITRS, 2004 Update, Tables 7a and 7b, Cost-Near-Term Years, pp. 20-21.	

CPU cost: Data from 1976-1999: E. R. Berndt, E. R. Dulberger, and N. J. Rappaport, "Price and Quality of Desktop and Mobile Personal Computers: A Quarter Century of History," July 17, 2000, ;Data from 2001-2016: ITRS, 2002 Update, On-Chip Local Clock in Table 4c: Performance and Package Chips: Frequency On-Chip Wiring Levels -- Near-Term Years, p. 167. ;	

Average transistor price: Intel and Dataquest reports (December 2002), see Gordon E. Moore, "Our Revolution,”	

Microprocessor Frequency (MHz)

Microprocessor power dissipation (W)

Physics	

Performance

CPU	
 Performance	

~(1	
 /	
 time	
 per	
 event	
 and	
 per	
 “computing	
 power”)

Degradation	
 area

Improvement	
 area

detailed	
 sim.

fast	
 sim.

very	
 fast	
 sim.

CPU	
 versus	
 Physics	
 performances

M. Verderi (LLR/IN2P3)

Physics	

Performance

Degradation	
 area

Improvement	
 area

detailed	
 sim.

very	
 fast	
 sim.

CPU	
 versus	
 Physics	
 performances  
&	
 new	
 technologies

fast	
 sim.

CPU	
 Performance	

~(1	
 /	
 time	
 per	
 event	
 and	
 per	
 “computing	
 power”)M. Verderi (LLR/IN2P3)

Physics	

Performance

CPU	
 Performance	

~(1	
 /	
 time	
 per	
 event	
 and	
 per	
 “computing	
 power”)

Degradation	
 area

Improvement	
 area

very	
 fast	
 sim.

CPU	
 versus	
 Physics	
 performances  
&	
 Multi-­‐threading

Without	
 MT

detailed	
 sim.

fast	
 sim.

M. Verderi (LLR/IN2P3)

G4 Ver 10.00.p01

In Brief

•Modern CPU architectures: need to introduce parallelism	

•Memory and its access will limit number of concurrent
processes running on single chip	

•Solution: add parallelism in the application code
!

•Geant4 needs back-compatibility with user code and simple
approach (physicists != computer scientists)	

•Events are independent: each event can be simulated
separately	

•Multi-threading for event level parallelism is the natural
choice	

8

Geant4 design

Event Level Parallelism

• Version 10 supports (optional) event-level parallelism

- Can now take advantage of the full CPU power of your machine which likely
has more than 1 core	

- You may still opt for a sequential (non-multi-threaded) build (e.g. if you rely
on non thread-safe external code)	

!
•Installation	

- No new dependencies, see the Geant4 Installation Guide accessible from the
Geant4 web page (User Support -> Documentation -> Installation Guide)	

- Turn on MT via cmake switch	

- See also latest developments and performance at http://twiki.cern.ch/twiki/

bin/view/Geant4/MultiThreadingTaskForce

10

http://twiki.cern.ch/twiki/bin/view/Geant4/MultiThreadingTaskForce

G4 Ver 10.00.p01

General Design

11

G4 Ver 10.00.p01

Simplified Master / Worker Model

•A G4 (with MT) application can be seen as simple finite state machine	

12

G4 Ver 10.00.p01

Simplified Master / Worker Model

•A G4 (with MT) application can be seen as simple finite state machine	

•Threads do not exists before first /run/beamOn	

•When master starts the first run spawns threads and distribute work

13

Master
Worker

G4 Ver 10.00.p01

Shared Vs Thread-local

•To reduce memory footprint threads must share at least
part of the objects	

•General rule in G4: threads can share whatever is
invariant during the event loop (e.g. threads do not
change these objects while processing events, these are
used “read-only”)	

- Geometry definition	

- Electromagnetic physics tables	

- The reason for this is discussed in 	

second part

14

G4 Ver 10.00.p01

How to configure Geant4 for MT

•cmake	
 -­‐DGEANT4_BUILD_MULTITHREADED=ON	
 […]	

•Requires “recent” compiler that supports ThreadLocalStorage technology
(to be discussed Thursday) and pthread library installed (usually pre-
installed on POSIX systems)	

•Check cmake output for :	

-­‐-­‐	
 Performing	
 Test	
 HAVE_TLS	

-­‐-­‐	
 Performing	
 Test	
 HAVE_TLS	
 -­‐	
 Success	

•If it complains then your compiler is too old, sorry…	

•Mac OS X, you need to use clang>=3.0 (not gcc!). On Mac OS X 10.7:
cmake	
 -­‐DCMAKE_CXX_COMPILER=clang++	
 -­‐DCMAKE_C_COMPILER=clang	
 \	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

-­‐DGEANT4_BUILD_MULTITHREADED=ON	
 […]	

•Sorry no WIN support!	

•Compile as usual

15

G4 Ver 10.00.p01

Code Compatibility

•Some API have changed to enable MT (this is why this is a major
release)	

•The exercises of this tutorial will show how to implement these correctly
for MT	

!

•You can use an application developed for G4 Ver 9.6
without changing your code in sequential mode (except for
other mandatory modifications not MT-related)	

!

•An MT-ready application, can also run in sequential mode
without changing your code (but not vice-versa)

16

Three steps to migrate

You can get benefits of MT with three steps	

1.First migrate your sequential application to version 10.0
compiled in sequential mode	

- It’s a major release so some migration is needed also non MT related
(e.g. retired physics models)	

2.Then re-compile Geant4 libraries activating MT but still keeping
your application in sequential mode	

- It should work as expected	

3.Then migrate to MT the application and start debugging it	

- For simple application should be trivial if no static/global objects are
present	

- For larger user-code thread-safety has to be implemented

17

Results

G4 Ver 10.00.p01

Reproducibility

•Geant4 Version 10.0 guarantees strong reproducibility	

- Given a setup and the random number engine status it is possible to
reproduce any given event independently of the number of threads or the
order in which events are processed	

•Note: (optional) radioactive decay module breaks this in MT, we
are currently working on a fix	

•This does not mean the results are wrong!	

!

• Simulation results are equivalent between Sequential and
MT

19

G4 Ver 10.00.p01

CPU / Memory performances

20

Memory usage (in MB)	

200+18*Nt	

(instead of 200*Np)

Obtained with HEP style geometry	

G4 Ver 10.00.p01

Different Architectures

Geant4 has been run with
success on a variety of
hardware architectures:	

•Intel / AMD	

•MIC	

•PowerPC (BG/Q)	

•ARM / Intel Atom

21

PR
EL
IMI
NA
RY

BlueGene/Q data courtesy of T. LeCompte (ANL)	

ARM tests in collaboration with P.Elmer (Princeton;CMS)	

Hardware courtesy of OpenLab (CERN)

E
ve

nt
s/

m
in

/c
hi

p/
G

H
z

Obtained with HEP style geometry	

Absolute performances:	

====== Max Events/min/cpu =======
154.4619 Intel Xeon L5520@2.27GHz
319.7392 Intel Xeon X5650@2.67GHz
534.6305 Intel Xeon E5-2695 v2@2.40GHz
73.8040 Intel Atom C2730@1.7GHz
46.8705 Exynos 5410 Octa Cortex-A15@1.6GHz
119.2088 BlueGene/Q@1.6GHz
334.4548 Intel Xeon Phi 7120P@1.238GHz

Pre
lim
ina
ry

G4 Ver 10.00.p01

Comparison with Sequential

T

22

5%

-60%

Obtained with HEP style geometry	

This is the reason why 	

MT will be needed

Absolute throughput (sequential)

We have substantially improved
physics (extended HAD theory
driven processes, more precise
EM tables, new processes) and at
the same time improved CPU
performances.	

We believe there are more
opportunities for optimizations
in our code and we are actively
working on them

23

Heavy developments: FTF becomes	

competitive with QGS

Fast Log/Pow mathematics

Improvements for MT
bring benefits also to
sequential

FTFP_BERT

±2.5%

Obtained with HEP style geometry	

Extensions

Integration with external parallelization framewors

POSIX standards facilitate integration with external libraries/frameworks:	

• MPI based parallelism already available in Geant4	

• TBB based examples being developed

23

Example:
4 MPI jobs
2 threads/job
MPI job owns histogram

MPI vs MT

• MPI is a multi-process application	

- Copies of the same application are started on a (distribution) system	

- Each one is completely independent of the others	

- A communication layer is established between ranks	

• MT is a shared-model application	

- Threads are independent but they share the memory of the machine	

- Special attention is needed to avoid race-conditions (thread-safety)	

• In a distributed memory system (a cluster, a host with
coprocessors) a mixed approach may be the best solution	

- Spawn, via MPI, multiple applications on nodes	

- On each node use MT to efficiently use memory	

• If application is not memory bound pure MPI may be easier to use

26

G4 Ver 10.00.p01

Geant4 On Intel Xeon Phi

Results: linearity

28

61 Physical cores

2threads/core

Results: memory usage

29

Number of threads

M
em

or
y

us
ag

e
(M

B)

Baseline 200MB	

Additional 40MB/thread

Baseline: 0 thread	

memory consumption

Slope: 38MB/thread

The road forward

30

The road forward

30

Conclusions

• Geant4 Version 10.0 supports event level parallelism via multi-
threading	

- Implements a master/worker model	

- Most memory consuming objects: geometry and EM physics tables are shared

between threads	

• Very good results achieved	

- Linearity of throughput achieved for better than 90%	

- Memory footprint kept under control	

- Different architectures tested: Intel, ARM, Xeon Phi, BlueGene/Q	

- Support MPI and TBB via examples	

• In the future we will concentrate in further improving absolute
performances	

- Improving intra-physics model performances	

- Evaluating C++11 , openMP (Cilk++,…)

31

