

FPG-AI: a Technology Independent Framework for Edge AI Deployment Onboard Satellite, and its Characterisation on NanoXplore FPGAs

ESA OSIP Idea - Early Technology Development

Recent Advances in European Space FPGAs: Technologies and Applications

- Activity Context and Background
- Proposal Objectives
- Implementation on NX FPGAs
- Hardware Prototyping
- Conclusions

- Activity Context and Background
- Proposal Objectives
- > Implementation on NX FPGAs
- Hardware Prototyping
- > Conclusions

Activity Context

- > Growing interest in **AI for space applications**:
 - > Weather and Atmospheric Monitoring
 - > Object Detection and Tracking
 - > Ground Classification
 - > Fault Detection, Isolation, and Recovery for Reliability
 - > Autonomous Spacecraft Navigation
- > Al deployment onboard the satellite constitutes an open challenge
- > Satellites are resource- and power- constrained devices operating in a harsh environment
- > The complexity of AI models collides with the limitations of satellite platforms

Activity Context

> Multiple hardware technologies are being investigated for AI acceleration onboard the satellite:

- > FPGAs are a promising technology for AI acceleration for their <u>energy efficiency</u> and <u>radiation</u> <u>tolerance</u>
- > The design of FPGA-based accelerators for AI typically requires high design expertise and long time-to-market
- > Growing interest in **DNN-to-FPGA automation toolflows** for rapid AI deployment onboard the satellite

Background: FPG-AI Toolflow for CNNs

> Automation toolflow for efficient deployment of pre-trained CNN models on FPGA technology [1], [2]

NanoXplore Day – June 2024

FPG-Al Key Features

- > Easy integration in user-defined SoCs:
 - > Providing as output the accelerator HDL sources and not the final bitstream
 - > Possibility to tune the resource consumption according to the requirements of other IPs
 - ➤ No workload sharing with the Host-CPU
- > Unmatched device portability of the Modular Deep Learning Engine (MDE) thanks to:
 - ➤ Absence of third-party IPs
 - > High scalability in terms of DSP/On-chip memory usage
 - > Fine-grain configurable through a .vhd file
 - Enabling the implementation on FPGAs from different vendors and heterogeneous resource budgets!

- Activity Context and Background
- Proposal Objectives
- > Implementation on NX FPGAs
- Hardware Prototyping
- > Conclusions

Proposal Objectives

- "Extending and consolidating the framework to a wider set of supported Al algorithms, e.g. Recurrent Neural Networks (RNNs)"
- "Ensuring that all state-of-the-art devices are supported by the tool, especially focusing NanoXplore (NX) FPGAs, enabling the use of these devices for Al applications and pursuing European sovereignty"
- "Evaluating the tool capability with a prototype hardware demonstrator"

- Activity Context and Background
- Proposal Objective and Organization
- Implementation on NX FPGAs
- > Hardware Prototype
- Conclusions

Implementation on NX FPGAs

> Study of NX Technology and Design Suite:

- > Ramp up on NX Design Suite (Impulse 23.3.0.2)
- > Study of NanoXplore on-chip memory and DSP resources
- > 20/07/2023: One-day visit to NanoXplore headquarters in Paris for early feedbacks on Impulse flow and for identifying the hardware platform
 - → NG-Ultra FPGA selected as the target device

> Selected Case Studies:

▶ LeNet-5:

- > Digits recognition on MNIST dataset
- Layers: 2x[Conv + AvgPool] + 3 Dense
- > 44K parameters (~1.36 Mbit)

Network in Network (NiN):

- > Image classification on CIFAR10 dataset
- Layers: 9 Conv + 1 GlobalAvgPool
- > 969K parameters (~29.68 Mbit)

Implementation on NX FPGAs:

Design Flow: NX Impulse

Implementation on NX FPGAs

- > Upgrade of FPG-AI hardware architecture for NX technology:
 - Main issue: low implementation frequency
 - > Pin-point changes to the architectural stage for CNNs to reduce the critical path
 - > Frequency increased from 28.6 MHz up to 43.0 MHz for LeNet-5, 15 MHz from up to 25.6 MHz for NiN (for the MDE only)
- > Exploitation of FPG-AI and NX development tools to obtain implementation results:
 - > Summary of the collected results on NG-Ultra:

	LeNet-5	NiN	MobileNet	VGG16
1 PE	V	V	On-goi	ng
16 PE	√	√	(actively working with	NX support team)

Implementation on NX FPGAs

Model	#PE	LUT	FF	Register File Block	DPRAM	DSP	MDE Frequency [MHz]	AXI Frequency [MHz]
LaNet	1	9197 (2%)	4631 (1%)	89 (4%)	29 (5%)	51 (4%)	30.82	33.7
LeNet 16	16	13252 (3%)	5415 (2%)	38 (2%)	149 (23%)	426 (32%)	24.16	34.17
NI:NI	1	29503 (5.5%)	11433 (2.3%)	0 (0%)	340 (50.6%)	41 (3.1%)	20.8	24.4
NiN	16	38247 (8%)	12450 (3%)	0 (0%)	297 (45%)	415 (31%)	19.5	33.8

NanoXplore Day – June 2024

- Activity Context and Background
- Proposal Objectives
- > Implementation on NX FPGAs
- Hardware Prototype
- > Conclusions

Model and Platform Selection

- > Selection of a development platform hosting a NX FPGA:
 - > NG-Ultra Devkit Board v1.1, suggested by NanoXplore and kindly received on loan from ESA Microelectronic Section
- > Identification of the DNN model to be characterized in hardware:
 - > LeNet-5 selected as the target model (light and commonly used model)

Accelerator Generation with FPG-AI

NanoXplore Day – June 2024 18

FPG-Al Integration on NG-Ultra Devkit SoC

> Hardware prototype concept:

NanoXplore Day - June 2024

PL/PS Interface

- Extension of the accelerator AXI interface to 128-bit to ensure compliance with NG-Ultra SoC
- ➤ Instantiation of the AXI SoC interface component (NX Library) in the VHDL top level to connect the PS and the PL
- Development of C code to initialize the DDR memory and to control the accelerator
- Clock generation with PLL
- Performed test to validate communication between PS and accelerator's register file (AXI Slave interface)
 - Currently working on that, thanks to recently released NX-scope logic analyzer support for NG-Ultra Dev-kit
 - > FPGA demo to be announced soon

Detailed Results & Benchmarking

> Selected FPGAs for the comparison (T5.1):

- NanoXplore NG-ULTRA (28 nm)
- > Microchip Polarfire MPF500T (28 nm), similar resources to RTPF500T
- Microchip RTG4 (65 nm)
- > AMD Space-Grade Kintex Ultrascale XQRKU060 (20 nm)
- AMD Zynq 7000 XC7Z045 (28 nm)

> Selected case studies (T5.2):

- > LeNet-5:
 - > Digits recognition on MNIST dataset
 - Layers: 2x[Conv + AvgPool] + 3 Dense
 - > 44K parameters (~1.36 Mbit)

> Network in Network (NiN):

- > Image classification on CIFAR10 dataset
- Layers: 9 Conv + 1 GlobalAvgPool
- > 969K parameters (~29.68 Mbit)

Detailed Results & Benchmarking

#PE	1						
Device	NG-ULTRA	MPF500T	RTG4	XQRKU060	XC7Z045		
LUT	8745 (2%)	8889 (1.8%)	8928 (5.9%)	4824 (1.5%)	6014 (2.8%)		
FF	3983 (1%)	4751 (1.0%)	5048 (3.3%)	4031 (0.6%)	3688 (0.8%)		
RF/LUTRAM/ μSRAM	16 (1%)	22 (0.5%)	15 (7.1%)	148 (0.1%)	172 (0.2%)		
DPRAM/BRAM/LSRAM	44 (7%)	30 (2.0%)	32 (15.3%)	16.5 (1.5%)	16.5 (2.11%)		
DSP	51 (4%)	62 (4.2%)	62 (13.4%)	59 (2.1%)	59 (6.56%)		
MDE Frequency [MHz]	29.4	67.6	51.5	114.9	100		
AXI Frequency [MHz]	41.7	125.0	82.6	161.3	200		
Timing Efficiency [GOP/s]	0.862	1.724	1.316	2.92	2.55		
DSP Efficiency [GOP/s/#DSP]	0.0169	0.0278	0.0212	0.049	0.043		
RAM [Mbit]	2.071	0.602	0.772	0.589	0.591		
RAM Efficiency [GOP/s/Mb]	0.416	2.864	1.705	4.958	4.315		

Final Review – 10 June 2024 22

Detailed Results & Benchmarking

#PE	1						
Device	NG-ULTRA	MPF500T	XQRKU060	XC7Z045			
LUT	29503 (5.5%)	20058 (4.2%)	18794 (5.7%)	24485 (11.2 %)			
FF	11433 (2.3%)	8807 (1.8%)	11992 (1.8%)	13813 (3.2%)			
RF/LUTRAM/ μSRAM	0 (0%)	0 (0%)	0 (0%)	0 (0%)			
DPRAM/BRAM/LSRAM	340 (50.6%)	918 (60.4%)	340 (31.5%)	344.5 (63.2%)			
DSP	41 (3.1%)	39 (2.6%)	35 (1.3%)	35 (3.9%)			
MDE Frequency [MHz]	20.8	55.6	79.37	83.33			
AXI Frequency [MHz]	24.4	126.1	161.3	161.3			
Timing Efficiency [GOP/s]	0.423	1.127	1.610	1.690			
DSP Efficiency [GOP/s/#DSP]	0.0103	0.0289	0.046	0.048			
RAM [Mbit]	15.94	17.93	11.95	12.11			
RAM Efficiency [GOP/s/Mb]	0.027	0.063	0.135	0.140			

Final Review – 10 June 2024 23

- Activity Context and Background
- Proposal Objective and Organization
- > FPG-Al Extension to RNNs
- Implementation on NX FPGAs
- Hardware Prototype
- Conclusions

Project Outcome

- > FPG-AI: end-to-end toolflow for the acceleration of DNNs on FPGAs
 - Technology-independent flow: possibility to target FPGAs from Xilinx, Intel, Microsemi, and NanoXplore
 - Easy integration in user-defined SoCs and high degree of customization

> Extension to Recurrent Neural Networks (RNNs):

- ➤ Achieved implementation results on multiple RNN-FPGA pairs
- > Toolflow characterized for Fault Detection and Sequence Classification tasks

> Extension to NanoXplore technology:

- Achieved implementation results for two CNN models targeting the NG-Ultra device
- Deployed FPG-Al's accelerator on a Zyng ZCU106 Development Board to evaluate the flow
- > Built a solid expertise on NX flow that will be used to finalize the hardware prototype on NG-ULTRA

Thanks for the attention!

FPG-AI Framework Features

- Ready-to-use Tooflow
- Supporting for both CNN and RNN models
- Technology Independent HDL
- Extremely portable solution
- Enabling Space Qualified AI Acceleration

Project Technical Outcomes

- ✓ Made FPG-Al Available to the Space Community
- ✓ Designed support for LSTM and GRU RNN layers
- ✓ First AI Implementation on NanoXplore NG-ULTRA FPGA

Contacts:

- Prof. Luca Fanucci, <u>luca.fanucci@unipi.it</u>
- Assistant Prof. Pietro Nannipieri, pietro.nannipieri@unipi.it
- Research Fellow Tommaso Pacini, tommaso pacini@phd.unipi.it