

A Low-Data-Rate Connectivity Architecture for Earth Observation (EO) in Low Earth Orbit (LEO)

02-December-2024

Steven George & Josep Rosello

Future Missions & Instruments Division Earth Observation Programme Directorate

Frank Zeppenfeld

Future Programmes Division Connectivity & Secure Communications Directorate

ESA CSC x EOP Cross-directorate Initiative

Contents

1. IoT4EO Vision

- Introduction & Background
- IoT4EO Objectives
- 2. IoT4EO Service Definition & Stakeholders
 - Service & System Overview
 - Service A: Bi-Directional low-data-rate TT&C
 - Service B: Bi-Directional low-data-rate interaction with in-situ sensors

3. IoT4EO Provider-agnostic system architecture

- Requirements Translation & Traceability
- Standardisation & Interoperability Action Plan

—— — II 👫 —— — II II ±= —— II II = — += — — II II >= 11 >= = = = = □ □ □ → THE EUROPEAN SPACE AGENCY

IoT4EO Vision

Introduction & Background

Earth Observation has very heterogenous sources of data
Need to federate those sources

→ Connectivity to LEO is very expensive (especially if at very high speed)

- → Need to find a connectivity service
 - → cost-effective
 - near-permanent (even if it is only at 1 kb/s)

Widespread adoption of cellular and non-cellular Low-Power Wide-Area Network (LPWAN)
→ Internet of Things (IoT)

Traditional & SmallSat complement

(Zoom High Resolution Case \rightarrow Human Activity)

→ THE EUROPEAN SPACE AGENCY

· eesa

SoW (link) – 2 Studies granted

- x1 OHB (DE) Сонв
- x1 Airbus (FR)

Work descriptions

T1: Use cases, Market Survey and Requirements review

• Workshop on 16th Feb. 2023

T2: ConOps and Architecture Definition:

- 3-year scenario Evaluate existing systems
- 7-year scenario Potential optimization

T3: Detailed architectural design, including simulations

- Link budgets → System Feasibility
- Orbit propagators (system)

T4: Technology/Standardization Roadmap

- Workshop on 2-3 Dec. 2024
- Identify Pre-development (for future activities)
- WRC-2027 for freq. ?

T5: Support to ESA for international exchange

With IOAG Agencies + NewSpace (via Workshop or other)

The IoT4EO Drawing Board

1. Facilitate the utilization of **<u>near-permanent</u>** IoT comms for future LEO EO missions

- \rightarrow Direct & Bi-Directional (Space Earth)
- \rightarrow In-Direct & Bi-Directional (via ISL mainly GEO/MEO)
- 2. Develop High Level ConOps & Preliminary Architecture associated services
- 3. Develop the business case for cross support / federating:
 - Institutional actors
 - Commercial NewSpace actors

Two key drivers

\rightarrow Ubiquitous :

- Timeliness: near 24/7
- scale-ability & standards \rightarrow Provider agnostic

\rightarrow Affordable & Simple:

- Fit for Narrow Band & low data rates (kb/s range)
- Excluded: high data rate communications (complementary)

- EO users: where to subscribe?
- Providers: what to offer ?

IOT4EO Objectives (as in the IoT4EO Service Def. & Prelim. Spec.)

IoT4EO Use Cases & Applications

IoT4EO Service Definition & Stakeholders

▬ ▬ ▮ # = = :: !! !! != = !! !! = :: = = 0 ≥ !! !! := := = !!

IoT4EO: Two CORE Services (A&B)

→ THE EUROPEAN SPACE AGENCY

*

IoT4EO Service & System Overview

- \rightarrow At least one (10¹) or two (10²), orders of magnitude compared to traditional TT&C systems with a single ground station
- \rightarrow In-situ & satellite **co-located** measurements, in spatial and temporal dimensions

	Service A-1	Service A-2	Service B
Data Type	TT&C	TT&C	Data & Messaging
Communication Direction	Bi-directional	Bi-directional	Bi-directional
Coverage	Terrestrial & Coastal (Limited at open ocean)	Terrestrial & Oceanic (Limited at Poles)	Terrestrial & Oceanic
Visibility Latency	< 10 Minutes	Near-zero	N/A
Daily Data Allowance	≥30kB or ≥300kB*	≥30kB or ≥300kB*	≥3kB
Upload/Download Speeds	≥2kbps	≥2kbps	≥2kbps
Message Length	Variable (Ave 0.2kB, Max 1kB)	Variable (Ave 0.2kB, Max 1kB)	Variable (Ave O.1kB, Max 1kB)
Capacity	>500 Satellites	>500 Satellites	<20,000 Sensors

*Subject to user requirements, the improvement must be at least an order of magnitude, which means a minimum increase by a factor of 10 or 100

→ THE EUROPEAN SPACE AGENCY

12

Service A-1 (Direct bidirectional low-data-rate TT&C)

Bi-directional TT&C Exchanges

Supports standard telemetry, tracking, and command (TT&C) data types, and offers both uplink and downlink communications.

Global Terrestrial & Coastal Coverage

Continuous and uninterrupted global coverage over terrestrial and coastal areas, capable of extending to a latitude range of $\pm 90^{\circ}$.

< 10 Minute Visibility Latency

Less than a 10 Minute visibility latency over terrestrial and coastal areas, by leveraging a well-distributed gateway infrastructure.

≥30kB or ≥300kB Daily Data Allowance*

Send/receive ≥150 or ≥1500 messages/day/satellite (~0.2kB each, on average) with a cumulative total daily data allowance of ≥30kB or ≥300kB. "Subject to user requirements, the improvement must be at least an order of magnitude, which means a minimum increase by a factor of 10 or 100

≥2kbps Upload and Download Speeds

Data upload/download speeds start at 2 kbps, with priority given to higherspeed transmissions for mission-critical operations

Service description

TT&C exchanges (Ground $\leftarrow \rightarrow$ LEO EO sats):

- 1. Enable dynamic satellite tasking
- 2. Near-permanent link

Attractive to:

- EO Satellite Providers
- EO Satellite Operators
- EO Data Providers
- EO Data Users

Applications/Use Cases

Service A-2 (Indirect bidirectional low-data-rate TT&C)

Bi-directional TT&C Exchanges

Supports standard telemetry, tracking, and command (TT&C) data types, and offers both uplink and downlink communications.

Global Terrestrial & Oceanic Coverage

Continuous and uninterrupted global coverage over terrestrial & oceanic areas, capable of extending to a latitude range of ±70°.

Near-zero Visibility Latency

Near-zero Visibility latency over terrestrial & oceanic areas, by leveraging beam coverage of GEO communication providers

≥30kB or ≥300kB Daily Data Allowance*

Send/receive ≥150 or ≥1500 messages/day/satellite (~0.2kB each, on average) with a cumulative total daily data allowance of ≥30kB or ≥300kB. *Subject to user requirements, the improvement must be at least an order of magnitude, which means a minimum increase by a factor of 10 or 100

≥2kbps Upload and Download Speeds

Data upload/download speeds start at 2 kbps, with priority given to higherspeed transmissions for mission-critical operations

💳 🔜 🖬 🚍 💳 🕂 📲 🧮 🔜 📲 🔚 🔚 🔤 📥 🚳 🍉 📲 🚟 🖿 📾 🖓 🖿 🛨

Bi-directional Scientific Data Exchanges

Supports scientific data and messaging data types, and offers both uplink and downlink communications.

Global Terrestrial & Oceanic Coverage

Continuous and uninterrupted global coverage over terrestrial & oceanic areas, capable of extending to a latitude range of ±90°.

Variable Visibility Latency

Variable Visibility latency over terrestrial & oceanic areas, highly dependent on number and distribution of in-situ sensors.

≥3kB Daily Data Allowance

Send/receive \geq 30 messages/day/sensor (~0.1kB each, on average) with a cumulative total daily data allowance of \geq 3kB.

≥2kbps Upload and Download Speeds

Data upload/download speeds start at 2 kbps, with priority given to higher-speed transmissions for mission-critical operations

Service description:

In-situ sensors \leftrightarrow LEO EO satellites:

- 1. In-situ sensor data collection
- 2. In-situ sensor triggering for **co-located** in-situ and remote sensing measurements, across spatial and temporal dimensions.

Attractive to:

- EO Data Providers
- EO Data Users
- In-situ Sensor Users / Operators

Applications/Use Cases:

In-situ Sensor Data **Collection & Activation**

2

IoT4EO Provider-Agnostic System Architecture

Vision/User Req. \rightarrow Service \rightarrow System

(Requirements Translation & Traceability)

→ THE EUROPEAN SPACE AGENCY

*

17

IoT4EO Provider-Agnostic System Architecture (Simplified)

- core functionalities & objectives ? ٠
- systems & interfaces & providers needed ?
- interfaces & APIs already available? ٠
- data formats, protocols, and standards ? ٠

IoT4EO Survey Results – Sneak Preview

━ ━ ■ ■ ₩ ₩ ━ = # # ■ ■ # = ₩ ■ ₩ = ₩ ₩ ₩ ₩ ₩ = ₩ = = = ₩

USER Survey Results – Stakeholder Demographics & Interest

*

PROVIDER Survey Results – Stakeholder Demographics & Interest

*