
EPFL

|||iT

space enabled

Simulating Space Policy Implications on Collision Avoidance Decisions Using the Environment-Vulnerability-Decision-Technology Framework

October 2024

EPFL Self-Introduction

Jonathan Wei

- BSc Microengineering, EPFL, 2018-2021
- MSc Microengineering, minor in Space Technologies, EPFL, 2021-2024
- Co-founder & systems engineer, EPFL Xplore
- Master's thesis, MIT, 2024

Co-authors:

- William E. Parker (MIT, Astrodynamics, Space Robotics, and Controls Lab (ARCLab))
- Jacqueline H. Smith (MIT, Space Enabled Research Group)
- Sina Es Haghi (Politecnico di Milano)
- Danielle Wood (MIT, Space Enabled Research Group)

- EPFL **Motivation**
 - Exponential increase in the number of objects launched into space
 - More than 25'000 objects larger than 10 cm, ~1 million between 1 cm and 10 cm¹
 - Congestions in some orbital regions lead to more attention required on collision avoidance activities

Annual number of objects launched into space

Earth orbit or beyond.

2.500

2,000

1.500

1 0 0 0

500

1980

1990

in Data This includes satellites, probes, landers, crewed spacecrafts, and space station flight elements launched into World **United States**

Data source: United Nations Office for Outer Space Affairs (2024) OurWorldInData.org/space-exploration-satellites | CC BY Note: Where they differ, launch attributions are based on the commissioning country, not the country conducting the operations

2010

2000

onathan Wei

Our World

United Kingdom China

European Space Agency

Russia

Japan France India

Germany

EPFL Thesis Aim

Lack of "international space traffic rules"

- Need of better understanding the implications of such traffic rules
- What parameter do we use to decide if a maneuver is required? What factor do we consider to decide who maneuvers (in case of spacecraft spacecraft conjunction)

2 Specific Cases:

If we use the **same probability of collision (Pc) and time of maneuver threshold** for both spacecrafts in conjunction, how would different thresholds impact the resulting number of maneuvers?

If we have a space traffic law that takes the **socio-economic impact** of the spacecraft into account in the decision of who maneuvers, what would be the implications of it on the number of maneuvers of each spacecraft?

EPFL What is COLA-EVDT?

 COLA-EVDT 1.0: MATLAB software → Collision avoidance Decision Support System that takes into account the socioeconomic impact of the spacecrafts in conjunction

• COLA-EVDT 2.0:

- Added space policy study capabilities
- Take TLEs and CDMs as input
- COLA-EVDT 2.0 designed to specifically answer the 2 above questions, but modular

EVDT Framework

space enabled

System Architecture Framework, developed at the Space Enabled research group at MIT Media Lab, used to create decision support systems for sustainable development applications

- Environment model: "What is happening in the natural environment?"
- Vulnerability model: "How will humans be impacted by what is happening in the natural environment?"
- Decision model: "What decisions are humans making in response to environmental factors and why?"
- Technology model: "What technology system can be designed or acquired to provide high-quality information that supports human decision-making?"

Jonathan Wei

EVDT Framework

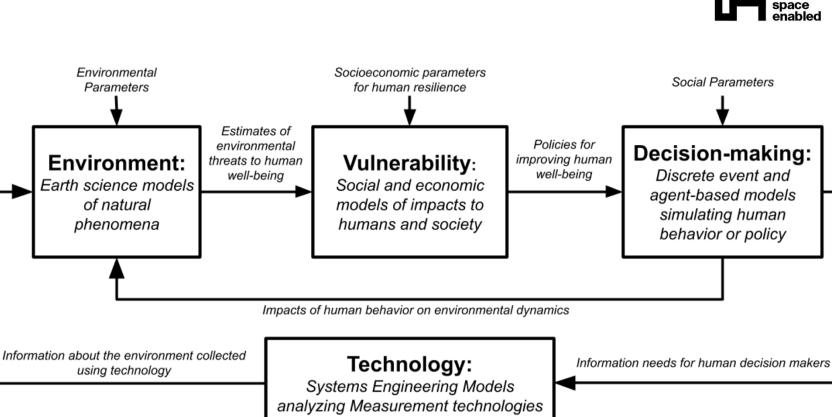
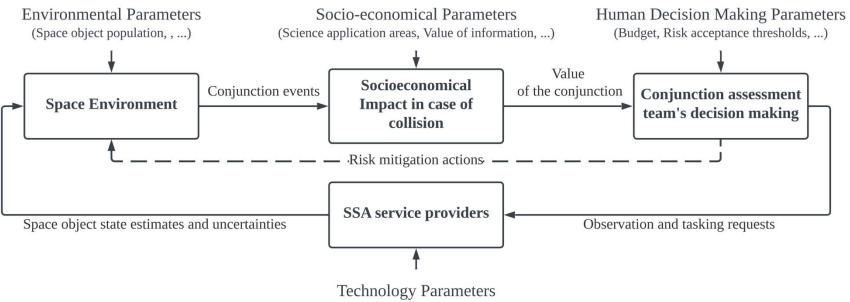



Fig.: Jack B. Reid and Danielle Wood. "Decision Support Model and Visualization for Assessing Environmental Phenomena, Ecosystem Services, Policy Consequences, and Satellite Design Using Earth Observation Data". In: AIAA (2020).

EVDT Framework – COLA-EVDT

(Provider accuracies, Data access probability, ...)

Fig: Sina Es Haghi. Implementing the environment-vulnerability-decision-technology framework to space collision avoidance applications. url: https://www.politesi.polimi. it/handle/10589/203214. space enabled

Decision Model

Rules4CREAM (Collision Risk Estimation and Automated Mitigation)

CASCADE (Collision avoidance, satellite coordination assessment demonstration environment)

Long term **space pop. scenario**, suggest **bilateral STM rules**, give information about chosen ruleset **consequences**

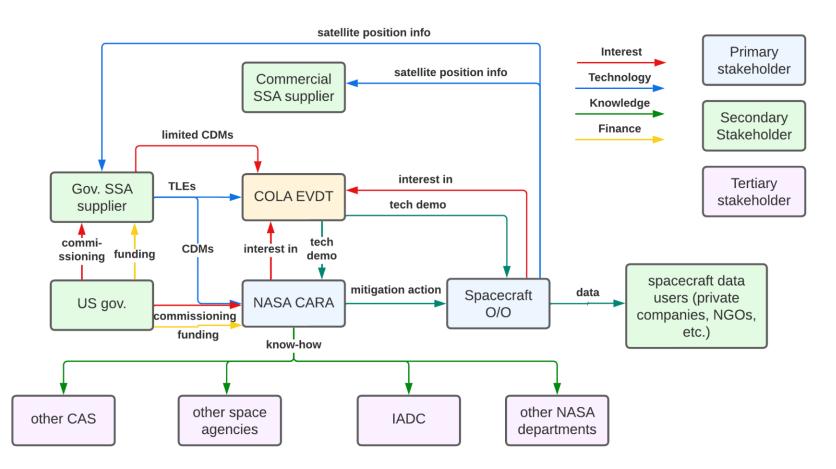
Future use by spacecraft

0/0

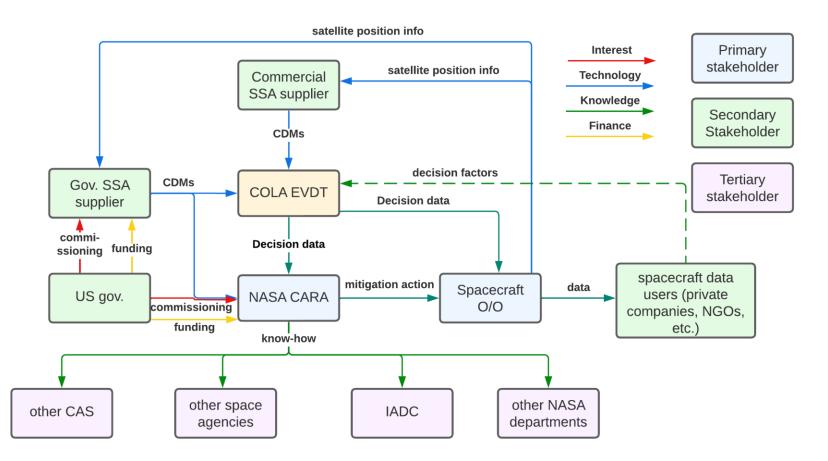
COLA-EVDT

Flexible space policy study tool aimed at understanding implications of **international STM rules**, including **socio-economic impact**

> Policy makers, NASA CARA


NASA CARA (Conjunction Assessment and Risk Analysis)

Main Characteristics Advanced decision process used for **real time conjunction assessment** for NASA and US satellites


NASA CARA, US O/O

Primary Stakeholder(s)

EPFL Stakeholder Relationships – What it is

EPFL Stakeholder Relationships – What it could be

EPFL Vulnerability Model – Spacecraft Ordinal Ranking

Main Application	Earth Observation	Scientific 1	Research	n Communic	ation	Navigation
Score S_{ma}	10	10		5		5
General Category	Human Spaceflight	Military	Civil	Commercial		
Score S_{gc}	10	7.5	5	2.5		

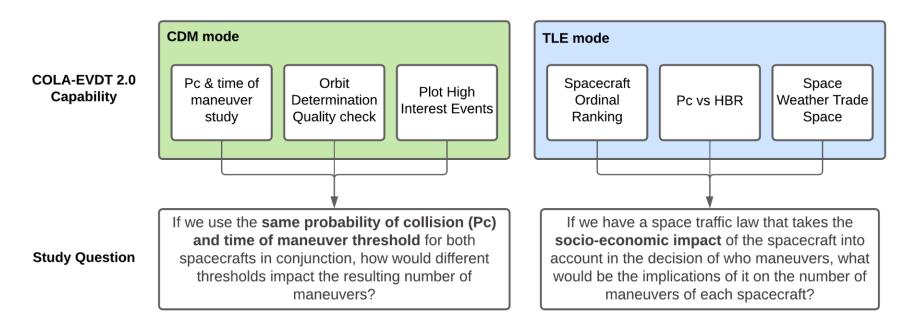
Socio-economic Score S_{so} $S_{se} = 0.3 \cdot S_{qc} + 0.7 \cdot S_{ma}$

Scaled Socio-economic Score S_{sse} (for $R_e > 10$)

- $S_{sse} = \frac{S_{se}}{R_e \cdot \alpha}$ R_e redundancy level α redundancy scaling factor

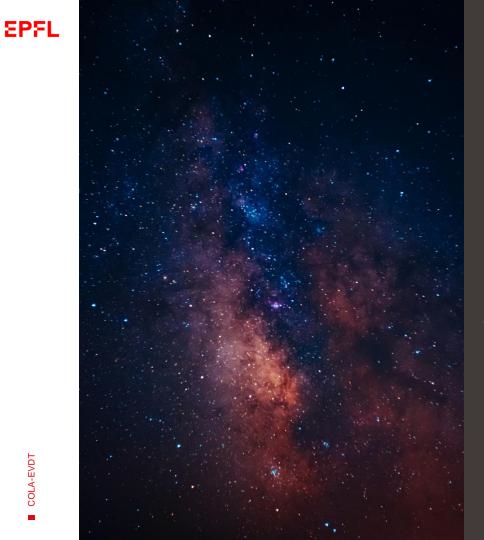
EPFL Vulnerability Model – Spacecraft Ordinal Ranking

Cost Score S_c


 $S_c = \begin{cases} \frac{C_{hw}}{10^8} & \text{if } C_{hw} \le 10^9 \\ 10 & \text{if } C_{hw} > 10^9 \end{cases} \quad \text{C}_{hw} \text{ hardware cost (USD)}$

Total Score S_{tot} $S_{tot} = 0.5 \cdot S_{sse} + 0.5 \cdot S_c$

Scaled Total Score S_{stot}


 $S_{stot} = \begin{cases} S_{tot} \cdot R_l & \text{if } R_l \ge 0.5 \\ S_{tot} \cdot 0.5 & \text{if } R_l < 0.5 \end{cases} \quad R_l \text{ remaining expected lifetime (0-1)}$

COLA-EVDT 2.0 – Improvements Summary

Mapping CDMs to the 1st question and TLEs to the 2nd question is advantageous:

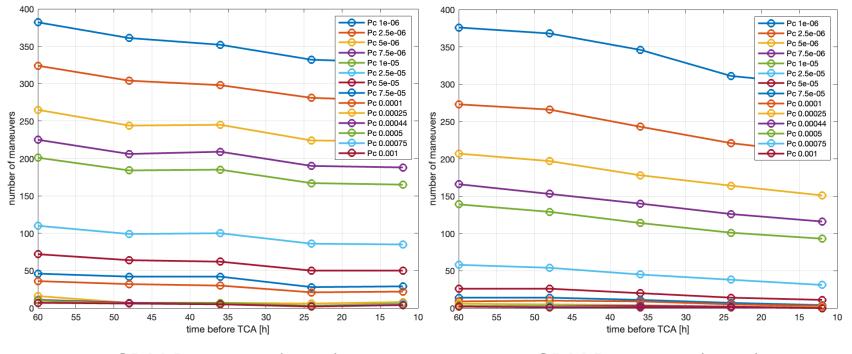
- For question 1, we need **realistic Pc value** that are only available in CDMs
- For question 2, we need to be able to choose the primary spacecraft freely

Results

1. Datasets

2. Policy Study: Common Pc and Time of Maneuver Threshold

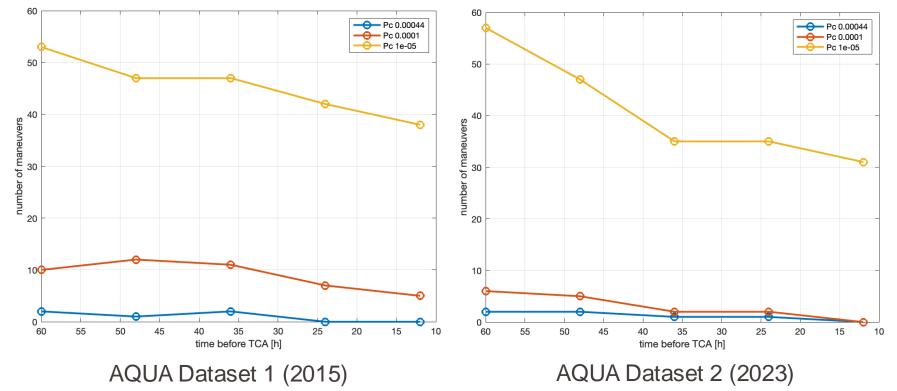
3. Policy Study: Ordinal Ranking based Maneuver Decision & Socioeconomic Factor Sensitivity Analysis

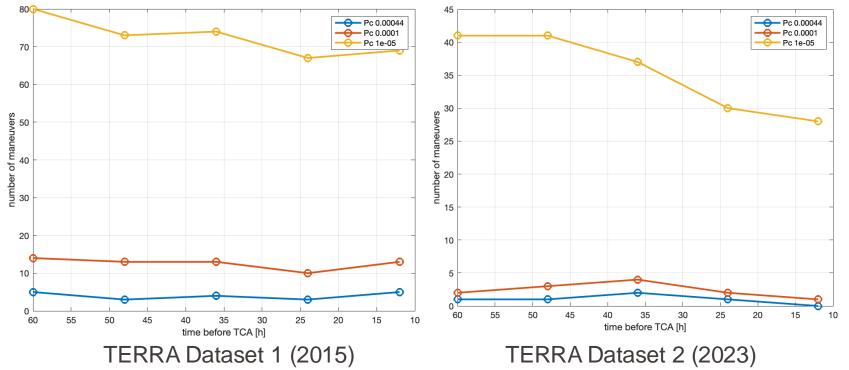

EPFL Datasets

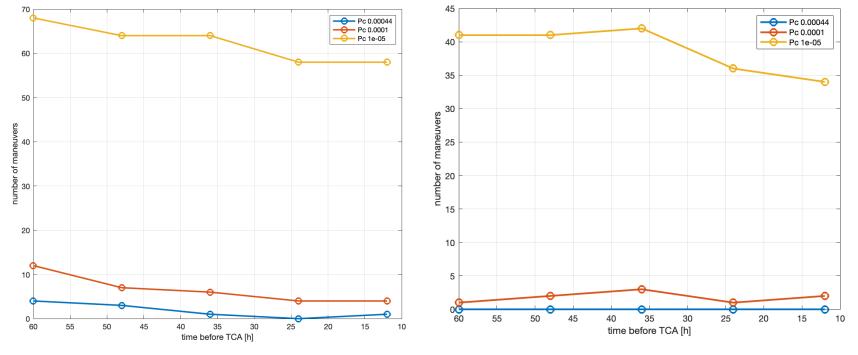
Spacecraft	NORAD ID	General Category	Main Application	Remaining Lifetime	Redundancy Level
Landsat 7	25682	Civil	Earth Observation	0	3
Terra	25994	Civil	Earth Observation	0	1
Aqua	27424	Civil	Earth Observation	0	1
ICEYE X-14	51070	Commercial	Earth Observation	0.75	34
SWISSCUBE	35932	Commercial	Communication	0	1
AEROCUBE 11-R3	43849	Commercial	Communication	0.5	2

List of primary spacecrafts (TLE mode):

Available CDM datasets:


Dataset Number	Start Date	End Date	NORAD ID	Spacecraft
			25682	Landsat 7
1	1/1/2015	12/31/2015	25994	Terra
			27424	Aqua
	1/1/2023	6/30/2023	25994	Terra
2			27424	Aqua
			43613	ICESat-2




CDM Dataset 1 (2015)

CDM Dataset 2 (2023)

COLA-EVDT

Landsat 7 Dataset 1 (2015)

ICESat-2 Dataset 2 (2023)

21

EPFL Policy Study: Common Pc and Time of Maneuver Threshold

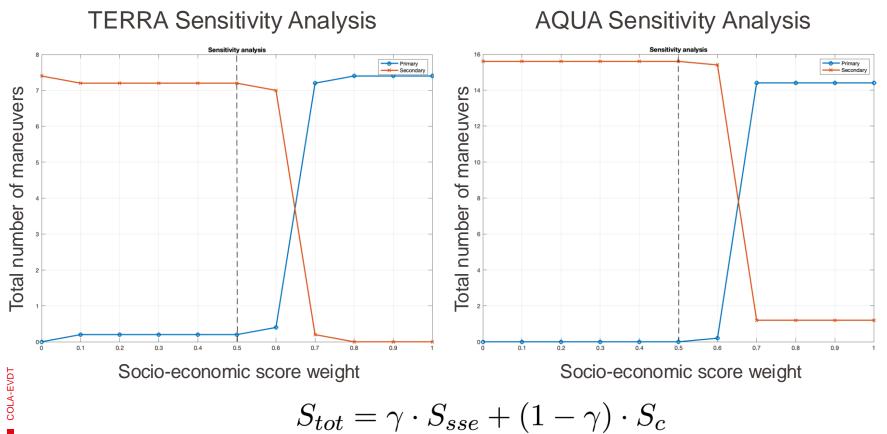
Main Findings:

- Results suggest that the influence of the Pc threshold is significantly higher than the influence of the time of maneuver threshold on the resulting number of maneuvers
- The influence of the time of maneuver seems to be higher in dataset
 2: better orbit determination could provide smaller covariance matrices closer to TCA

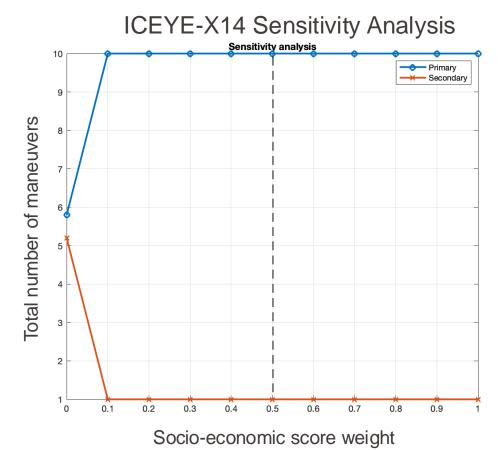
Next step:

 Use a more diverse set of CDMs to understand how different orbital parameters and different detection capabilities influence the results

EPFL Policy Study: Ordinal Ranking based Maneuver Decision


Spacecraft name	Av. nb of primary maneuver	Av. nb of secondary maneuver	Primary maneuvers %
Terra	0.4	6.6	7 %
Aqua	0	15.6	0 %
ICEYE-X14	9.28	1	91~%

Ordinal Ranking Based Decision


Spacecraft name	Av. nb of primary maneuver	Av. nb of secondary maneuver	Primary maneuvers %
Terra	0	7	0 %
Aqua	0	15.6	0 %
ICEYE-X14	7.8	3	72.4~%

NORAD ID Based Decision

EPFL Policy Study: Socioeconomic Factor Sensitivity Analysis

EPFL Policy Study: Socioeconomic Factor Sensitivity Analysis

25

EPFL Policy Study: Socioeconomic Factor Sensitivity Analysis

Main Findings:

- With low and balanced socio-economic score weighting, TERRA & AQUA will not take maneuver initiative: very high cost score
- With high socio-economic score weighting, high cost score has less influence, remaining lifetime reduce their total score: TERRA & AQUA take maneuver initiative
- ICEYE-X14 will take maneuver initiative most of the time as it has low socio-economic score and low cost score
- Overall, a 50/50 split is a reasonable weighting

Conclusion

Outcome Summary
 Limitations & Future Work

26

onathan We

27

EPFL Outcome Summary

- **COLA EVDT 2.0 Main Improvements:**
- CDM mode: directly read & study CDMs, Orbit Determination quality check
- TLE mode: ordinal ranking based decision model & sensitivity analysis, simplified Pc vs HBR, SWTS

Simulation Outcome:

 Common Pc threshold has significantly more influence on number of maneuvers than time of maneuver

- Simulations on TERRA, AQUA & ICEYE-X14 confirm assumptions on who would maneuver most of the time
- Socio-economic weighting sensitivity analysis suggests that a 50/50 split between socio-economic score and cost score is reasonable

EPFL Limitations & Future Work

Limitations:

- Use of J₂ propagator & TLEs which are not accurate enough for real conjunction assessment
- Ordinal based ranking: accurate information not always readily available (price, operational status, maneuverability)
- Currently assume that active secondary payloads are maneuverable

 \rightarrow acceptable for capability demonstration

Future Work:

- Pc and time of maneuver threshold study on a more diverse set of CDMs
- Study other potential space policies
- Use SSR as socio-economic valuation method

Upskilling in Space Sustainability How to design more sustainable missions?

A new course to teach learners to design and operate missions and space business with a sustainability perspective

Target audience: professionals with a few years of work experience and an interdisciplinary background including engineers, managers and policy makers

EPFL

COLA-EVDT

EPFL Backup Slides

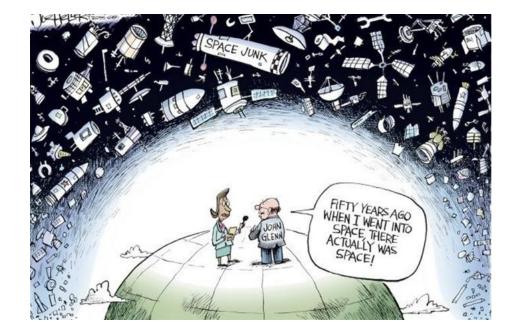
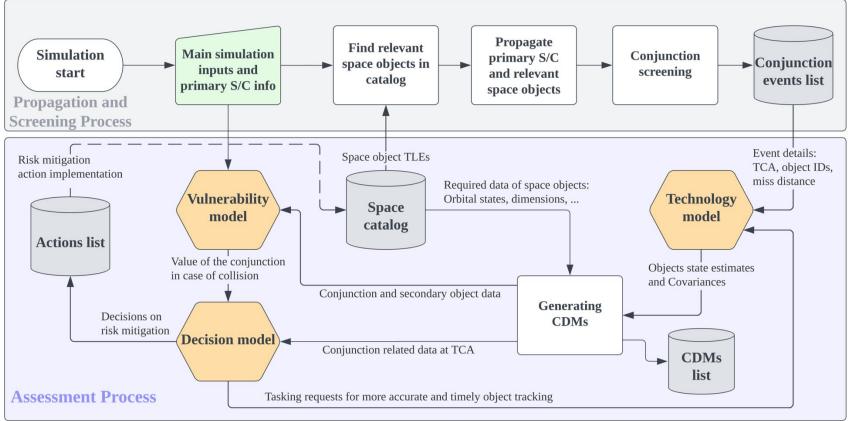



Fig.: John Glenn cartoon

EPFL COLA-EVDT 1.0

