O Belstead

Simple Balance Integral Model for Demise Tools

James Beck, Ian Holbrough Belstead Research Ltd

ESA Clean Space Days, Noordwijk 8-11th October 2024 PR00047/D12

Demise Material Modelling

- Standard 'Equivalent Metal' Model
 - Used in all tools for most materials
 - Heat up, melt with latent heat
 - Not everything demises like a metal
- Conduction Modelling
 - Bulk heating models (component based tools)
 - Can use 1D models (significant impact on runtime)
 - Full conduction models (panel based tools)
- Balance Integral Modelling
 - Considers heat on complete thickness of part
 - Uses thermal conductivity to impose a temperature profile
 - Heat Balance Integral (HBI) has been in SAMj for nearly 10 years
 - Some robustness issues

Simplified Balance Integral Model

- Objective
 - Provide a simple, robust model which accounts for temperature gradients
 - Provide a platform to allow alternative physics for demise
 - Applicable to component based, bulk heating models
 - Applicable to metals, glasses and composites
- Methodology
 - Start with HBI approach
 - Simplify generally cubic temperature profile to quadratic
 - Apply suitable surface conditions to capture surface temperatures and demise effects
 - Capture surface recession
 - Melt
 - Glass viscous material removal
 - Char removal

Simple Balance Integral Model

- Equation for bulk heating
 - Standard methodology
 - Total heat content
- Assume temperature distribution (L thickness)
 - Simple quadratic approach
 - Provides approximation for heating or cooling
 - Relation between front, back and bulk temperatures
- Equation for surface temperature
 - Energy balance between heat in and heat conducted to interior
 - Gives

$$\Delta T_0 = \left(\frac{2q_{in}}{\rho c_p L} - \frac{2kn}{\rho c_p}\right) \Delta t$$

- Calculate bulk temperature, surface temperature
 - Infer back face temperature

$$\Delta T_{bulk} = \frac{q_{in}A}{mc_p} \Delta t$$

$$T(x) = nx^2 - 2nLx + T_0$$
 $n = \frac{T_0 - T_b}{L^2}$

$$T_b = \frac{3T_{bulk} - T_0}{2}$$

$$\frac{dT}{dt} = q - \alpha \frac{d^2T}{dx^2}$$

Demise Considerations

- · Heating is the same for all materials
- Demise behaviour is different
 - Different materials assessed differently
- Metals
 - Melt at front face only
 - Assess material above melt temperature

$$L_m = L\left(1 - \sqrt{1 - \frac{T_0 - T_m}{T_0 - T_b}}\right)$$

Integrate temperature profile gives average temperature above melt

$$\Delta T = \left(\frac{nL_m^2}{3} - nLL_m + (T_0 - T_m)\right)\frac{L_m}{L}$$

• Slightly underestimates melt against 1D predictions in very early stages of melt

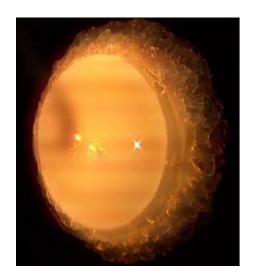
• Available energy for demise is then
$$\Delta E = max \left(\Delta T, \frac{\Delta T_{bulk}}{3}\right) mc_p$$

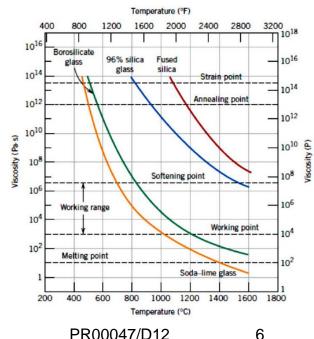
- Correct mass removed from front face; gives surface recession
- Latent heat used is removed from bulk heat, bulk temperature updated

Glass Material Demise Modelling

- Viscosity-shear Model ۲
 - Based on understanding of hot outer layer •
 - Material shear ٠
 - Zerodur test picture suggests this type of mechanism ٠
- Requirements ۲

Belstead


- Representation of viscosity-temperature curve
 - Implement VFT formula $\log(\eta) = A + \frac{D}{T T_0}$
- Require temperature profile through material ٠
 - Implement simplified balance integral model
 - Bulk heat $\Delta T_{hulk} = \frac{q_{in}A}{\Delta t}$ •
 - Surface heat


$$\frac{dT}{dt} = q - \alpha \frac{d^2T}{dx^2}$$

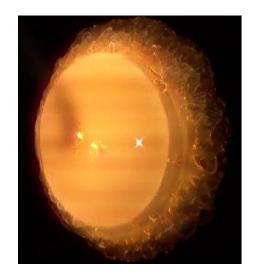
Assumed profile

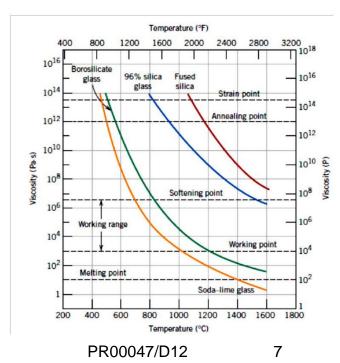
$$T(x) = nx^2 - 2nLx + T_0$$

$$n = \frac{T_0 - T_b}{L^2}$$

6

Glass Material Demise Modelling

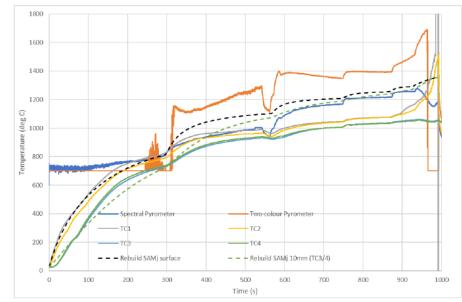

- Material Demise
 - Sufficiently low viscosity

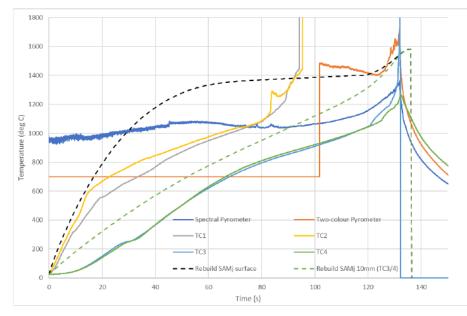

$$\log(\eta) = A + \frac{B}{T - T_0}$$

- $T_c = T_0 + \frac{z}{(3-A)}$ Find depth with profile
- Require timescale for mass loss
 - Faster mass loss as viscosity reduces
 - Base on surface viscosity

$$\eta_s = 10^{A+\frac{B}{T_s - T_0}}$$

- Timescale $t_m = 6\eta_s$
- Adjust temperature profile for mass lost
 - Update bulk temperature for hot material loss
- Catalycity
 - Note also very low catalycity of glass surfaces
 - MUST be included in model





Glass Modelling

- Simplified Balance Integral Model
 - OD approach, so computationally efficient
 - Surface energy balance
 - Captures representative temperature gradient
 - Surface and bulk temperatures reasonably captured
 - Material removal by surface viscosity
 - Mass loss well captured across Zerodur tests
- Materials Available
 - Zerodur (test data)
 - Fused Silica (test data)
 - Borosilicates (viscosity data)
 - GFRP (test data)

Belstead

PR00047/D12

CFRP Modelling

- Driven by matrix behaviour
 - Low char yield allows fibres to be removed
- Material removal driven by surface recession
 - Removal of layers
- Allow for pyrolysis and blowing
 - Char progression
 - Endothermic reaction removes heat from material
 - Blowing reduces heating at surface
- Assess recession as function of temperature
 - Threshold (recession starts)
 - Gradient (recession approximately linear with temperature)
 - Simplification can be improved with more data

Methodology

- **Material Properties** ullet
 - ٠
- terial Propercies Char front temperature based on TGA (reasonably consistent) Char front temperature based from temperature profile $L_c = L\left(1 \sqrt{1 \frac{T_0 T_c}{T_0 T_b}}\right)$
 - Heat of ablation consistent across tested materials •
 - $m_a = (\rho_v \rho_c) A \Delta L_c$ Material charred in step based on movement of char front
 - Mass from different in virgin and charred densities (no reaction zone)
 - Endothermic pyrolysis requires reduction in bulk temperature $\Delta T_{bulk} = -\frac{m_g \Delta H_{abl}}{mc_n}$

- C01 LY556 matrix (baseline) ٠
- C02 L20 matrix (demisable) ٠
- C10 EX1515 matrix (cyanate ester most robust) •
- (Kevlar also tested/modelled) ٠

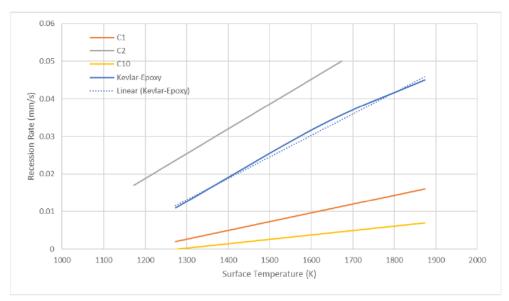
	C1	C2	C10
Fibre	T300	T300	M55J
Matrix	LY556	L20	EX1515
Density (kg/m ³)	1580	1580	1580
Char Density (kg/m ³)	1265	1250	1240
Char Front Temperature (K)	700	700	700
Heat of Ablation (J/kg)	1300000	1300000	1300000
Emissivity	0.9	0.9	0.9

Methodology

- Recession Rates
 - Function of temperature
 - Tentatively linear

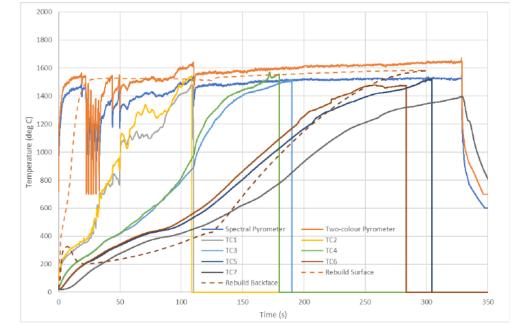
	C1	C2	C10
Fibre	T300	T300	M55J
Matrix	LY556	L20	EX1515
Recession Threshold (K)	1187	915	1273
Recession Gradient (m/sK)	2.33e-8	6.6e-8	1.17e-8

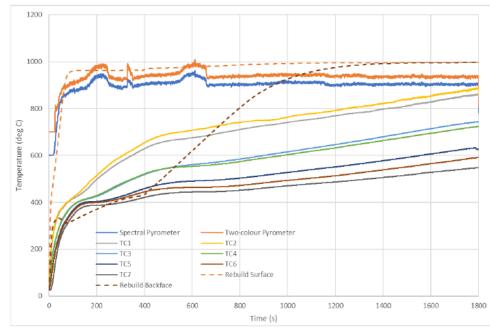
- · Test data is only current method for inference of recession rate
- Material removed from simulation


 $m_c = \rho_c A \Delta L$

- Char front depth reduced
- Surface temp to recession depth
 - Hot surface removed
 - No oxidation heat

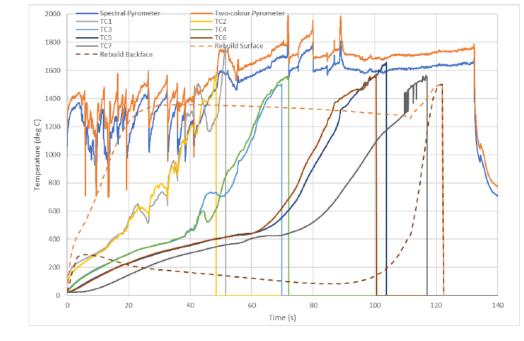
 $T_{0,new} = n \Delta L^2 - 2nL \Delta L + T_0$

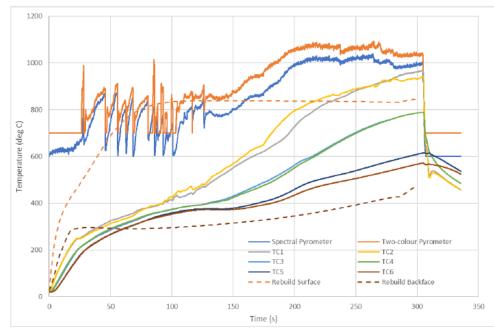

Bulk temperature updated


Belstead

Test Rebuild

- C01
 - High flux, low flux
 - Reasonable temperatures
 - Low flux increase after 400s
 - High flux is good
 - Reasonable recession (fit)




Belstead

Test Rebuild

- C02
 - High flux, low flux
 - Less good temperatures
 - Low flux good
 - High flux is underpredicted
 - Reasonable recession (fit)
- C10
 - Good temperature fit
 - Little recession

Belstead

Conclusions

- Simplified Balance Integral Model
 - Applicable to codes at DRAMA level
 - Bulk heating, component based
- Applicable to Various Materials
 - Metals
 - Glass (soon to be available in DRAMA)
 - CFRP
- Required Data
 - Glass models require viscosity-temperature curve to be measured
 - Can potentially be implemented without specific demise test
 - Currently require verification test
 - CFRP models require dedicated test at (minimum) 2 conditions to infer recession
- No Noticeable Impact on runtime

