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Agenda

Evolvement on the system architecture on LEO CubeSats up to 
16U due to Zero Debris by 2030 

• Zero Debris goals and their challenges 

• Collision avoidance and space situational awareness

• Passivation

• 5-year rule implementation

• Dead-on-arrival

 



Zero Debris goals and their key challenges
Goal Challenge

Guarantee successful disposal 
and improve orbital clearance

- Launching lower vs. reliability of de-orbit devices 
- Preparation for removal is not relevant LEO CubeSats

Avoid in-orbit collisions - Collision risk is relatively low because of the small area of a CubeSat
- Improvements are required on 24/7 availability for CAM while keeping 

costs low 
- Improvements are required on space situational awareness, especially 

soon after rideshare launches

Avoid internal break-ups - Risk is deemed low for break-ups due to on-board energy, however the 
key challenge is how to prove it with high reliability

Prevent intentional release of 
space debris 

- Compliant by design, may require additional testing for HDRMs

Improve on-ground causality 
risk assessment

- Not critical for CubeSats

Guarantee dark and quiet skies - Not critical for CubeSats



Collision avoidance and SSA

• Unambiguous identification within 1 day is a key challenge! 
 → Currently this may take weeks on rideshare launches 

• Collision avoidance by 2 methods to allow for a back-up:
• Propulsion 

→ May not always be available, e.g. not commissioned, failure
• Differential drag 

→Available shortly after launch
→Available when there is a propulsion failure
→It is being incorporated in STM tools  

• 24/7 availability; can be done (STM service or night shifts), however, to 
keep costs low there is a benefit in finding solutions such that this is not 
required 

GOALs:
- Unambiguous identification within 1 day post-launch
- Reliable CAM capability within 2 days post-launch
- Reaction time within 4 hours



Avoid internal break-ups, EPS passivation 

• Current implementation: 
• Demonstrate sufficiently low break-up 

risk by analysis

• Way forward: 
• We are planning a study on 

implementation of fault tolerant EPS 
passivation, to increase reliability 
without quantifying it

• Continuation of demonstrating 
sufficiently low break-up risk by 
analysis 

• Main challenge remains to prove 
the reliability using COTS

GOAL: Reliability of passivation >90%, on the road to fail safe passivation



Deorbit within 5 years

• Study case 1:
• 12U CubeSat with 4 deployable solar panels
• Altitude until the end of the mission needs to be >580 km

• Trade space (non-exhaustive): 
• Solution 1: Lower injection altitude 
• Solution 2: Increase drag

• 2-A: Drag device deploying at the end-of-life
• 2-B: Larger solar panels

• Solution 3: Propulsion for de-orbit maneuver

• Two step process to find a solution:
1. Is it possible?
2. Can we achieve the required reliability? 

GOAL: de-orbit within 5 years after the end-of-life with 90% reliability



Trade-off

Decay after end-of-lifeOperational mission

End-of-mission, 
altitude must be 

>580km

Duration 1 year < 5 year

Solution 1: Lower injection altitude

Max altitude at the start Maximum ~505 km 
injection orbit

Maximum 495 km at end-of-life

Solution 2: Increase drag 

Drag area N/A What does the tumbling drag area need to be to re-
enter within 5 years starting from 580 km? → 1.50 m2

• Solution 2-A: drag device, required area of 
drag device is calculated to be 3.0 m2

• Solution 2-B: increasing solar panels → drag 
area needs to increase 6 times

Solution 3: Propulsion

Delta-V N/A About 70 m/s Delta-V needed when starting at 580 km

Burn-up
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Trade-off

Decay after end-of-lifeOperational mission

End-of-mission, 
altitude must be 

>580km

Duration 1 year < 5 year

Solution 1: Lower injection altitude

Max altitude at the start Maximum ~505 km 
injection orbit

Maximum 495 km at end-of-life

Solution 2: Increase drag 

Drag area N/A What does the tumbling drag area need to be to re-
enter within 5 years starting from 580 km? → 1.50 m2

• Solution 2-A: drag device, required area of 
drag device is calculated to be 3.0 m2

• Solution 2-B: increasing solar panels → drag 
area needs to increase 6 times

Solution 3: Propulsion

Delta-V N/A About 70 m/s Delta-V needed when starting at 580 km

Burn-up

Not compliant with mission requirement

Not possible on this S/C



Trade-off - can we prove the reliability? 

• Solution 2-A: drag device
• Depends on the reliability of the drag device 

itself + the reliability of the trigger (if needed) 
• Some drag devices on the market are fully 

stand-alone

• Solution 3: propulsion for a de-orbit 
maneuver
• Depends on the reliability of the propulsion 

system, and nearly entire platform (AOCS, EPS, 
comms, OBDH)

  

Drag 
device

Propulsion AOCS EPS

Comms OBDH
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itself + the reliability of the trigger (if needed) 
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stand-alone
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maneuver
• Depends on the reliability of the propulsion 

system, and nearly entire platform (AOCS, EPS, 
comms, OBDH)

  

Drag 
device

Propulsion AOCS EPS

Comms OBDH

Not realistic to prove this reliability 
for a typical CubeSat using COTS

Drag device is the best solution 
→ this trade-off illustrates the benefit of any stand-alone deorbit device



Deorbit within 5 years – trade space

• Study case 2:
• Launch altitude is not critical

• Trade space: 
• Solution 1: Lower injection altitude 
• Solution 2: Increase drag

• 2-A: Drag device deploying at the end-of-life
• 2-B: Larger solar panels

• Solution 3: Propulsion for de-orbit maneuver

Best option, propulsion can be used for station keep if the mission 
lifetime is critical 

GOAL: de-orbit within 5 years after the end-of-life with 90% reliability



Dead-on-Arrival

• The Dead-on-Arrival scenario can be 
very limiting when calculating the 
maximum orbit injection altitude, 
and it is contributing to the debris 
problem 

• ISISPACE Deep Space Deployer (first 
launch on HERA) includes an
umbilical with an electrical interface 
for health checks

• The deployer has a clear use case 
on Earth to avoid Dead-on-Arrivals



Conclusion

There are several key solutions to be 
studied: 

• Reliable passivation solutions 
• Differential drag maneuvering for 

collision avoidance
• Solution to avoid 24/7 availability
• SSA after rideshare launch for fast 

S/C identification
• Reliable drag devices or other 

independent end-of-life solutions
• Propulsion for station keeping and 

collision avoidance
• Dead-on-arrival solution, such as an 

adapted deployer 
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