

ASTRO**BRAKE**

RELIABILITY AND SIMPLICITY FOR DEORBITING SPACECRAFT

CLEANSPACE DAYS 2024 ESTEC - 09/10/2024

Information on this presentation is not contractual and might not reflect the final product

PRESENTATION GAMA

IMPACT OF REGULATIONS **THE SEAT BELT EXAMPLE (US)**

1984, **65%** of Americans were **against mandatory seat belts** as well as **penalties for not wearing them** [1] National seat belt use rates

Note: Data for 1995 and 1997 was not available Data source: National Highway Traffic Safety Administration

END-OF-LIFE REGULATIONS **AROUND THE WORLD**

ESSB-ST-U-007 Issue 1 part 5.4.1.1; ODMSP part 4.2; LOS Article 41-12

Probability of successful disposal *above 0.9 through to end of life*

ESSB-ST-U-007 Issue 1 part 5.4.2.3; FCC 22-74A1

The orbit clearance time shall be less than 5 years

In an effort to reduce the orbital debris footprint of the Rideshare Program, Payloads are expected to adhere to the FCC's rule requiring the disposal of spacecraft as soon as practicable but no later than 5 years after the mission ends.

Figure 1: Excerpt from the Falcon 9's rideshare user guide

SATELLITE RELIABILITY CHALLENGES MANY SATELLITES FAIL

Only **60%** of Cubesats are successful

Launch year	Launched	Failed	Censored
1990-2009	441	228	213
2010-2019	425	56	369

Figure 2: Categorization of small satellites based on launch year [2]

Figure 3: Rate of success/failure among the 672 analyzed CubeSats (left); classification of the failures per reason (center) and per lifetime (right) [3]

[2] A. Cervone et al., "The Path towards Increasing RAMS for Novel Complex Missions Based on CubeSat Technology," CEAS Space Journal 16, no. 2 (March 2024): 203–24, https://doi.org/10.1007/s12567-023-00517-9. 5 [3] Raja Pandi Perumal et al., "Small Satellite Reliability: A Decade in Review," n.d.

Figure 1: Collective reliability of small satellites launched between 1990-2020

To deorbit using propulsion, all the spacecraft subsystems **MUST** still be functional

COST-BENEFIT TRADE-OFF

RELIABILITY REQUIREMENT

- + indirect costs for qualification of all subsystems required to deorbit
- + risk of not getting launch approval
- + risk of penalties

5-YEAR CLEARANCE REQUIREMENT

+ direct cost (more systems, more propellant, increased launch mass)

- Payload mass
- + indirect cost (increased complexity = more risks, more paperwork)

COST-BENEFIT TRADE-OFF

But, with the right system, costs can be reduced

SELECTED BENEFIT-COST RESULTS for IMMEDIATE ELIMINATION of HDR at LAGUARDIA AIRPORT

Benefits and Costs by	1995	2000
User Group	-	
Dollar Benefits and Costs (\$ Mil. per Year):		
Consumers:	\$160	\$167
Fare Reductions	\$100	5107
New Service	\$78	\$101
	(\$149)	(\$226)
Increased Delay Cost	-	
NET BENEFIT to CONSUMERS	\$89	\$42
Aidiana		
Annes.	(\$160)	(\$167)
Loss of Fare Premium	\$104	\$111
Incremental Demand Impact	0101	(007)
Increased Airline Delay Costs	(\$64)	(\$97)
	(\$120)	(\$153)
NET BENEFIT (LOSS) to AIRLINES		
Net Revenue to Airports:	\$14	\$24
TOTAL BENEFITS	\$193	\$236
TOTAL COSTS	(\$213)	(\$323)
NET DOLLAR BENEFIT OF ELIMINATING HDR	(\$17)	(\$87)

Source: "Report to Congress: A Study of the High Density Rule Study," May 1995, pp. 90-94.

Benefits and Costs by User Group	No deorbiting device	Other deorbiting device	Dragsail
Satellite Operators			
Purchase cost	1000	1000	1000
Operation cost	1000	1008	1005
Launch delay cost	1005	11028	11008
Fines			
Active deorbiting cost	1005	1005	1005
Satellite Manufacturers			
Design costs			1000
Qualification costs	1000	1000	1005
Delivery delay cost	1005	1005	1005
Launchers			
Launch authorization cost	1000	1000	1005

THE COST OF **RELIABILITY**

90% reliability = P(FAILURE_{EPS + ADCS + PROPULSION}) < 10%

 $n = \frac{ln(1 - Confidence \ Level)}{ln(Reliability)}$

Reliability	Number of test samples without failure (CL 95%)	
80%	14 🗖	x2
90%	29	×2
95%	59 🖆	
99%	299 <	×5

Assuming a binomial distribution

cost of **deorbiting device** < cost of **reliability worth it**

THE PRODUCT LINE ASTRO**BRAKE**

MAIVOS (Machine d'Assemblage et d'Intégration de VOile Solaire) INDUSTRIALIZE AND STANDARDIZE

- → Simulate Orbital decay with high precision to compute optimal sail size
- → Compute collision risks integrated throughout the deorbiting trajectory
- → Generate report for regulations

ASTROBRAKE

CONTACT US:

jordan@gamaspace.com