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Proximal Policy Optimization (PPO)Abstract
One of the main challenges that satellites face is the progressive accumulation of debris in LEO. Hence, the necessity to develop new strategies for debris removal, as well as

for servicing and refuelling existing satellites to increase their lifespan. This poster proposes an implementation of a Deep Reinforcement Learning (DRL) framework to

optimize the path of a chaser satellite, tasked with retrieving space debris or servicing other spacecrafts. Experiments have been conducted in a simulated environment, in the

presence of one space debris. The proposed approach addresses imperfect environmental modelling and measurements by using a Partially Observable Markov Decision

Process (POMDP). It replaces hidden state information with a belief function derived from the observation history, which is processed by a Long Short-Term Memory

(LSTM) to create a fixed-length sequence. This sequence is then weighted by a Transformer encoder to capture the non-linear dynamics of the signals. The resulting semantic

history guides an agent employing Proximal Policy Optimization (PPO), a model-free direct policy estimation method. PPO relies on two neural networks: a critic for value

estimation and an actor for policy evaluation, implemented as Multi-Layer Perceptrons (MLPs). The model considers the motion of the satellite and debris in LEO, under J2

and atmospheric drag effects. The reward function has been designed to achieve rendezvous with the debris, minimum fuel consumption and manoeuvre duration, and optimal

relative velocity. The poster concludes by presenting the results obtained.

Results

Database generation
A simulated database has been generated to train the neural networks. The chaser

S/C, tasked with ADR, is assumed to be launched into an orbit with high debris

density. In this poster, the S/C starts in a low equatorial orbit. The initial COEs of

the chaser are then transformed, using the Python library “Poliastro”, into a 7-by-1

state vector representing the instantaneous position, velocity and mass of the

satellite in ECI coordinates. The initial state of the debris is then obtained by

perturbing the semi-major axis, argument of perigee and true anomaly of the

chaser S/C. In this way, the debris is in a coplanar orbit similar to the one of the

S/C. The state vector of the debris is then propagated forward in time, with its

parameters changing under the effect of the J2 and atmospheric drag perturbations,

until the end of the simulation. The database is composed of the state vector of the

S/C at the initial time and the state vector of the debris, at each time-step.

Reward

In this POMDP-based architecture, the agent makes decisions based on partial observations of the environment, such as in space

debris removal where sensing limitations prevent precise knowledge of debris' position or velocity. To address this, the

architecture maintains a belief over the environment’s state, updated using a sequence of observation vectors processed by an

LSTM and a transformer encoder. The LSTM handles short-term dependencies and addresses the vanishing gradient issue for

moderately sized sequences, producing a fixed-length weighted sequence. The transformer encoder refines this sequence using

long-term correlations through multi-head self-attention. During training, zero-padding ensures uniform input length, while in

testing, the transformer's final output is passed to Proximal Policy Optimization (PPO). The agent’s PPO implementation uses

Multilayer Perceptrons (MLPs) for both the actor and critic, with two hidden layers. The actor outputs the angles and engine

thrust lever (continuous actions), modeled using Gaussian distributions.

POMDP
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The actor's weights 𝜃 are updated using the clipped surrogate objective 

function:

𝐿𝐶𝐿𝐼𝑃(𝜃) = 𝐸𝑡 𝑚𝑖𝑛 𝜌𝑡(𝜃)𝐴ˆ𝑡 , 𝑐𝑙𝑖𝑝 𝜌𝑡(𝜃), 1 − 𝜖, 1 + 𝜖 𝐴ˆ𝑡

where 𝜌𝑡(𝜃) =
𝜋𝜃 𝑎𝑡∣𝑠𝑡

𝜋𝜃𝑜𝑙𝑑 𝑎𝑡∣𝑠𝑡
is the importance sampling ratio between the new

and old policies, and 𝐴ˆ𝑡 is the advantage estimate. It is typically computed

using Generalized Advantage Estimation (GAE):

𝐴ˆ𝑡 =෍

𝑙=0

∞

(𝛾𝜆)𝑙𝛿𝑡+𝑙

where 𝛾 is the discount factor, 𝜆 is the GAE parameter controlling the bias-

variance trade-off, and 𝛿𝑡 is the Temporal Difference (TD) error given by:

𝛿𝑡 = 𝑟𝑡 + 𝛾𝑉 𝑠𝑡+1 − 𝑉 𝑠𝑡

where 𝑟𝑡 is the reward at time step 𝑡, 𝑉 𝑠𝑡+1 is the estimated value of the

next state and 𝑉 𝑠𝑡 is the estimated value of the current state.

𝜃𝑛𝑒𝑤 = 𝜃𝑜𝑙𝑑 + 𝛼𝛻𝜃𝐿
𝐶𝐿𝐼𝑃(𝜃)

The critic's weights 𝑤 are updated by minimizing the value function loss:

𝐿𝑉𝐹(𝑤) = 𝐸𝑡 𝑉𝑤 𝑠𝑡 − 𝑉𝑡
𝑡𝑎𝑟𝑔𝑒𝑡 2

This loss represents the mean squared error between the predicted value

𝑉𝑤 𝑠𝑡 and the target value 𝑉𝑡
𝑡𝑎𝑟𝑔𝑒𝑡

, where 𝑉𝑡
𝑡𝑎𝑟𝑔𝑒𝑡

is computed using the

discounted sum of rewards.

𝑤𝑛𝑒𝑤 = 𝑤𝑜𝑙𝑑 − 𝛽𝛻𝑤𝐿
𝑉𝐹(𝑤)

a [km] e i [deg] Ω ω

7160 0.02 0 0 88.5

Environment and actions
The state vector is updated at each time-step through the state transition function.

The function takes as inputs the old state, the magnitude and direction of the thrust

vector and the time interval, and then performs an integration of the state vector

over that interval, outputting the state vector at the successive time-step. In

addition to the ideal gravity and thrust acceleration, the J2 and atmospheric drag

effects are considered. With regard to the propulsion system, the chaser spacecraft

is equipped with a low power ion thruster that generates a low thrust with high

specific impulse. The direction of the thrust vector is defined by the elevation

angle 𝜃 and the azimuth angle 𝜑. The magnitude of the thrust vector is defined by

the percentage of the maximum thrust applied. These three parameters, that

determine the thrust acting on the spacecraft, are extracted by the Gaussian

distributions generated by the actor at each time-step.

S/C mass [kg] T [N] 𝑰𝒔𝒑 [s] c [m/s]

500 0.01 4000 39240

Training (stochastic actions choice) Test (deterministic actions choice)

Spacecraft mass Total Average Return

3D and 2D trajectories
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