Trajectory Optimization for Active Debris Removal: a
Transformer-based Reinforcement Learning Approach
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Abstract

One of the main challenges that satellites face is the progressive accumulation of debris in LEO. Hence, the necessity to develop new strategies for debris removal, as well as
for servicing and refuelling existing satellites to increase their lifespan. This poster proposes an implementation of a Deep Reinforcement Learning (DRL) framework to
optimize the path of a chaser satellite, tasked with retrieving space debris or servicing other spacecrafts. Experiments have been conducted in a simulated environment, in the
presence of one space debris. The proposed approach addresses imperfect environmental modelling and measurements by using a Partially Observable Markov Decision
Process (POMDP). It replaces hidden state information with a belief function derived from the observation history, which is processed by a Long Short-Term Memory
(LSTM) to create a fixed-length sequence. This sequence is then weighted by a Transformer encoder to capture the non-linear dynamics of the signals. The resulting semantic where p;(0) =
history guides an agent employing Proximal Policy Optimization (PPO), a model-free direct policy estimation method. PPO relies on two neural networks: a critic for value

Proximal Policy Optimization (PPO)

The actor's weights 8 are updated using the clipped surrogate objective
function:
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and old policies, and A”; Is the advantage estimate. It is typically computed

IS the iImportance sampling ratio between the new

estimation and an actor for policy evaluation, implemented as Multi-Layer Perceptrons (MLPs). The model considers the motion of the satellite and debris in LEO, under J2 using Generalized Advantage Estimation (GAE):
and atmospheric drag effects. The reward function has been designed to achieve rendezvous with the debris, minimum fuel consumption and manoeuvre duration, and optimal
relative velocity. The poster concludes by presenting the results obtained.
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Database generation Environment and actions where y is the discount factor, A is the GAE parameter controlling the bias-

A simulated database has been generated to train the neural networks. The chaser The state vector is updated at each time-step through the state transition function. variance trade-off, and &, Is the Temporal Ditference (TD) error given by:
S/C, tasked with ADR, is assumed to be launched into an orbit with high debris The function takes as inputs the old state, the magnitude and direction of the thrust S, =1, + YV (s;11) — V(sy)
density. In this poster, the S/C starts in a low equatorial orbit. The initial COEs of vector and the time interval, and then performs an integration of the state vector : : - :

’ : . A where 7, IS the reward at time step t, V IS the estimated value of the
the chaser are then transformed, using the Python library “Poliastro”, into a 7-by-1 over that interval, outputting the state vector at the successive time-step. In Tt P (St+1)

addition to the ideal gravity and thrust acceleration, the J2 and atmospheric drag next state and V(s;) is the estimated value of the current state.

effects are considered. With regard to the propulsion system, the chaser spacecraft 0o = Bo1q4 + aVyL P (0)
IS equipped with a low power ion thruster that generates a low thrust with high
specific impulse. The direction of the thrust vector is defined by the elevation

state vector representing the instantaneous position, velocity and mass of the
satellite in ECI coordinates. The initial state of the debris iIs then obtained by

perturbing the semi-major axis, argument of perigee and true anomaly of the The critic's weights w are updated by minimizing the value function loss:

chaser S/C. In this way, the dEb“S_’ IS 1h 4 coplanar orbit similar 0 the one f)f t_he angle 6 and the azimuth angle ¢. The magnitude of the thrust vector is defined by LVF(w) = E, [(Vw(st) — praroety ]
S/C. The state vector of the debris is then propagated forward in time, with its the percentage of the maximum thrust applied. These three parameters, that | |
until the end of the simulation. The database is composed of the state vector of the distributions generated by the actor at each time-step. K, (s:) and the target value V,“"?°" | where V,“"9%" is computed using the

S/C at the initial time and the state vector of the debris, at each time-step. discounted sum of rewards.
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In this POMDP-based architecture, the agent makes decisions based on partial observations of the environment, such as in space| | ... | 140000 1
debris removal where sensing limitations prevent precise knowledge of debris' position or velocity. To address this, the | 120000 1
architecture maintains a belief over the environment’s state, updated using a sequence of observation vectors processed by an| |- 100000 1
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LSTM and a transformer encoder. The LSTM handles short-term dependencies and addresses the vanishing gradient issue for
moderately sized sequences, producing a fixed-length weighted sequence. The transformer encoder refines this sequence using

499.6

5/C Mass [kg

60000
499.5

long-term correlations through multi-head self-attention. During training, zero-padding ensures uniform input length, while in 40000 -

testing, the transformer's final output Is passed to Proximal Policy Optimization (PPO). The agent’s PPO implementation uses o 20000 -

Multilayer Perceptrons (MLPs) for both the actor and critic, with two hidden layers. The actor outputs the angles and engine| | = | | | | . o} . l . . .
thrust lever (continuous actions), modeled using Gaussian distributions. : o rime Steps o o ’ 00 O e steps 20008 73000
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