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Introduction
 Resident Space Objects (RSOs) characterisation

- New Space era          space traffic        space debris

- Mitigate the proliferation of space debris

- Holistic characterisation of RSOs

- Estimate size, shape, materials, rotation, attitude...

- Use ground-based sensors (telescopes, radars) for observations

 Applications in the context of SST & SEP

- Mission analysis and design

• Active Debris Removal (ADR)

• In-Orbit Servicing (IOS)

- Address uncontrolled re-entries

- Verify contingency attitude modes
© ClearSpace SA 
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 Light curves

- Photometric measurements obtained with ground-based telescopes

- Apparent magnitude: 

Attitude estimation from photometric measurements

𝑚 = −2.5 log
𝐼𝑜
𝐼𝑟𝑒𝑓
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 Typical assumptions in light curve inversion for attitude estimation

- Knowledge of the RSO’s shape, size and surface optical properties

- Knowledge of the Aerosol Optical Depth (AOD)

 Challenges of the light curve inversion problem

- Ambiguities in measurements

- Nonlinear measurement model

 GMV’s previous experience

- Least Squared Method (LSM)

- Unscented Kalman Filter (UKF)

• Reliance on an initial estimate

• Tendency to converge to local minima

Attitude estimation from photometric measurements
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 Particle filter

- Approximate Bayesian estimator that represents probability densities using a weighted set of samples

- It effectively handles multimodal probability density functions (PDFs)

 Formulation

- The posterior PDF at time 𝑘 is approximated by:

- Principle of importance sampling          weights. Samples are drawn from a proposal density 𝑞.

- If the importance density is chosen to be the prior:

Particle filtering methods for attitude estimation
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 Generic particle filter

- Sequential Importance Sampling (SIS) algorithm + Resampling

Particle filtering methods for attitude estimation

Resampling avoids the degeneracy problem…

…but may produce sample impoverishment

PDF

Resampling

Draw samples 

from 𝑞

Update particle 

weights

Resampling

SIS
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 Developed particle filter

- Estimates the attitude of the RSO at a specific time

- Pseudo-batch algorithm

• Selects measurements from light curve subtracks

• Updates particle weights according to the RMSE

• Advantage: reduces the occurrence of local 

minima

- Reinitialisation in the first iteration

• Moves particles with higher RMSE to regions of 

higher probability

• Recomputes the weights of the new particles

• Advantage: refines the initial posterior PDF

Particle filtering methods for attitude estimation

Divide the light curve into subtracks

Create groups of real measurements

Update particle weights

Resampling

Add artificial noise

Compute simulated measurements

Reinitialisation

𝑖𝑓 𝑖𝑡𝑒𝑟 = 1 𝑒𝑙𝑠𝑒
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 Generic vs. developed particle filters

Particle filtering methods for attitude estimation

Pseudo-batch PFGeneric (sequential) PF

Advantages

Less local minima

Higher accuracy

Better computational performance

Noisy real measurements

Very high flexibility
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 High-fidelity simulator of photometric observations

- GMV’s Grial tool, implemented in Java using OpenGL.

- Calculates contributions to reflected light from each illuminated and visible pixel on a 3D shape and 

aggregates these contributions

- Bidirectional Reflectance Distribution Functions (BRDFs)

• Cook and Torrance (specular reflection)

• Lommel-Seeliger (diffuse reflection)

 Post-processing of the posterior PDF

- Cluster analysis to identify the modes of the resulting posterior PDF

- Clustering algorithm: Density-Based Spatial Clustering of Applications with Noise (DBSCAN)

- Analysis of PDF modes to identify the most probable attitude

Particle filtering methods for attitude estimation
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 General considerations

- Estimate the initial attitude of an RSO from simulated observations

- Assume that the RSO’s shape, size and surface optical properties, as well as the AOD, are known

- Assume that the uncontrolled RSO follows a spinning attitude law over the tracking duration

- Spinning attitude law parameters: RSO’s orientation, spin rotation axis and spin angular velocity

- Additional assumptions:

• Spin angular velocity can be estimated using a period-finding method (e.g. Lomb-Scargle periodogram)

• In the long-term, the RSO eventually rotates about its principal axis of maximum inertia (flat spin)

 RSO model properties

- Low Earth Orbit (LEO) at an altitude of 2000 km

- Satellite’s platform optical properties: 𝐾𝑑 = 0.15, 𝐾𝑠 = 0.7

- Solar array optical properties: 𝐾𝑑 = 0, 𝐾𝑠 = 0.1

Previous considerations

𝑋

𝑌

𝑍 𝑇𝑠 = 15 s
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 Case 1: light curve

Results. Case 1: unimodal posterior PDF

Attitude: 𝒙0 = [71, −58, 19] deg

Sensor noise: 𝜎 = 0.1
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Results. Case 1: unimodal posterior PDF
 Case 1: particle filter execution
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Results. Case 1: unimodal posterior PDF
 Case 1: particle filter execution
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Results. Case 1: unimodal posterior PDF
 Case 1: particle filter execution
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Results. Case 1: unimodal posterior PDF
 Case 1: particle filter execution
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Results. Case 1: unimodal posterior PDF
 Case 1: particle filter execution
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Results. Case 1: unimodal posterior PDF
 Case 1: particle filter execution
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Mode 2

𝑊 = 0.08 𝑊𝑁 = 1.5 × 10
−4

𝒙0 = [84.43, 44.25, 52.91] deg

𝝈 = [0.09, 0.09, 0.10] deg

 Case 1: cluster and posterior PDF analyses

Results. Case 1: unimodal posterior PDF

Mode 1

𝑊 = 0.92 𝑊𝑁 = 1.5 × 10
−4

𝒙0 = [71.75, −57.54, 18.74] deg

𝝈 = [0.03, 0.02, 0.04] deg

True attitude: 𝒙0 = [71, −58, 19] deg



Results
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 Case 2: multimodal posterior PDF



Page 27© GMV Property – All rights reserved

 Case 2A: light curve

Results. Case 2: multimodal posterior PDF

Attitude: 𝒙0 = [18, 37, −12.5] deg

Sensor noise: 𝜎 = 0.1
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 Case 2A: particle filter execution

Results. Case 2: multimodal posterior PDF
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Results. Case 2: multimodal posterior PDF
 Case 2A: particle filter execution
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Results. Case 2: multimodal posterior PDF
 Case 2A: particle filter execution
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Results. Case 2: multimodal posterior PDF
 Case 2A: particle filter execution
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Results. Case 2: multimodal posterior PDF
 Case 2A: particle filter execution
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Results. Case 2: multimodal posterior PDF
 Case 2A: particle filter execution
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Mode 2

𝑊 = 10−4 𝑊𝑁 = 1.2 × 10
−5

𝒙0 = [18.02, 9.03, 14.78] deg

𝝈 = [0.09, 0.07, 0.17] deg

Mode 4

𝑊 = 7 × 10−4 𝑊𝑁 = 1.2 × 10
−6

𝒙0 = [25.44, −20.91, −56.28] deg

𝝈 = [0.05, 0.04, 0.07] deg

 Case 2A: cluster and posterior PDF analyses

Results. Case 2: multimodal posterior PDF

Mode 1

𝑊 = 0.52 𝑊𝑁 = 2.1 × 10
−4

𝒙0 = [21.58, −49.85, −33.42] deg

𝝈 = [0.05, 0.13, 0.06] deg

Mode 3

𝑊 = 0.47 𝑊𝑁 = 1.9 × 10
−4

𝒙0 = [18.38, 36.41, −12.74] deg

𝝈 = [0.05, 0.13, 0.04] deg

True attitude: 𝒙0 = [18, 37, −12.5] deg
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 Case 2A: simulated light curves for the relevant modes

Results. Case 2: multimodal posterior PDF

Mode 1

𝑊 = 0.52 𝑊𝑁 = 2.1 × 10
−4

𝒙0 = [21.58, −49.85, −33.42] deg

𝝈 = [0.05, 0.13, 0.06] deg

Mode 3

𝑊 = 0.47 𝑊𝑁 = 1.9 × 10
−4

𝒙0 = [18.38, 36.41, −12.74] deg

𝝈 = [0.05, 0.13, 0.04] deg

True attitude: 𝒙0 = [18, 37, −12.5] deg

Possible solution: stereoscopic measurements
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 Case 2B: light curves from 2 ground stations during the same time interval

Results. Case 2: multimodal posterior PDF

Attitude: 𝒙0 = [18, 37, −12.5] deg

Sensors noise: 𝜎 = 0.1

GS 2: 30° N, 15° E  w.r.t. GS 1

Ground station 1

Ground station 2
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 Case 2B: light curves from 2 ground stations during the same time interval

Results. Case 2: multimodal posterior PDF

Ground 

station 1

Ground 

station 2
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 Case 2B: light curves from 2 ground stations during the same time interval

Results. Case 2: multimodal posterior PDF

Ground station 1

Ground 

station 1

Ground 

station 2
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Results. Case 2: multimodal posterior PDF
 Case 2B: particle filter execution
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Results. Case 2: multimodal posterior PDF
 Case 2B: particle filter execution
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Results. Case 2: multimodal posterior PDF
 Case 2B: particle filter execution
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Results. Case 2: multimodal posterior PDF
 Case 2B: particle filter execution
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Results. Case 2: multimodal posterior PDF
 Case 2B: particle filter execution
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 Case 2B: cluster and posterior PDF analyses

Results. Case 2: multimodal posterior PDF

Mode 1

𝑊 = 1.0

𝒙0 = [17.74, 35.66, −13.03] deg

𝝈 = [0.01, 0.02, 0.02] deg

True attitude: 𝒙0 = [18, 37, −12.5] deg
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Conclusions and future work
 Conclusions

- Understand the challenges of light curve inversion for attitude estimation

- Identify the limitations of sequential particle filters

- Develop the pseudo-batch particle filter with reinitialisation

- Analyse simulated test cases with single and multimodal posterior PDFs

- Use stereoscopic measurements to mitigate measurement ambiguities

 Future work

- Improve the computational performance of the particle filter

- Relax assumptions regarding the RSO’s attitude law and physical properties

- Extend analyses using real light curves
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