Attitude Estimation of Inactive Resident Space Objects from Photometric Measurements Using Particle Filtering

Clean Space Days 2024

ESTEC, Noordwijk, The Netherlands October 10, 2024

Jorge Rubio Antón Adrián de Andrés Tirado Carlos Paulete Periañez Diego Tirado Hernández Ángel Gallego Torrego Diego Escobar Antón

Excellence and beyond

FOUR DECADES PUSHING THE LIMITS

- **-** Introduction
- Attitude estimation from photometric measurements
- Particle filtering methods for attitude estimation
- Results
	- \checkmark Case 1: unimodal posterior PDF
	- \checkmark Case 2: multimodal posterior PDF
- Conclusions and future work

Introduction

Introduction

- Resident Space Objects (RSOs) characterisation
	- New Space era \longrightarrow space traffic \uparrow space debris \uparrow
	- Mitigate the proliferation of space debris
	- Holistic characterisation of RSOs
	- Estimate size, shape, materials, rotation, attitude...
	- Use ground-based sensors (telescopes, radars) for observations
- Applications in the context of SST & SEP
	- Mission analysis and design
		- Active Debris Removal (ADR)
		- In-Orbit Servicing (IOS)
	- -Address uncontrolled re-entries
	- -Verify contingency attitude modes

© RACAB © Indra

© ClearSpace SA

Attitude estimation from photometric measurements

Attitude estimation from photometric measurements

Light curves

- Apparent magnitude:
$$
m = -2.5 \log \left(\frac{I_o}{I_{ref}} \right)
$$

Attitude estimation from photometric measurements

- **Typical assumptions in light curve inversion for attitude estimation**
	- -Knowledge of the RSO's shape, size and surface optical properties
	- -Knowledge of the Aerosol Optical Depth (AOD)
- **Challenges of the light curve inversion problem**
	- -Ambiguities in measurements
	- Nonlinear measurement model
- **GMV's previous experience**
	- Least Squared Method (LSM)
	- Unscented Kalman Filter (UKF)
		- Reliance on an initial estimate
		- Tendency to converge to local minima

Particle filter

-Approximate Bayesian estimator that represents probability densities using a weighted set of samples

- It effectively handles multimodal probability density functions (PDFs)

Formulation

- The posterior PDF at time k is approximated by:

$$
p(\mathbf{x}_k|\mathbf{z}_{1:k}) \approx \sum_{i=1}^{N_s} w_k^i \delta(\mathbf{x}_k - \mathbf{x}_k^i)
$$

- Principle of importance sampling \longrightarrow weights. Samples are drawn from a proposal density q.

$$
w_k^i \propto w_{k-1}^i \frac{p(\mathbf{z}_k|\mathbf{x}_k^i)p(\mathbf{x}_k^i|\mathbf{x}_{k-1}^i)}{q(\mathbf{x}_k^i|\mathbf{x}_{k-1}^i,\mathbf{z}_k)}
$$

- If the importance density is chosen to be the prior:

$$
q(x_k^i|x_{k-1}^i, \mathbf{z}_k) = p(x_k^i|x_{k-1}^i) \longrightarrow w_k^i \propto w_{k-1}^i p(\mathbf{z}_k|x_k^i)
$$

© GMV Property – All rights reserved **Page 10** and 200 and 200

- **Generic particle filter**
	- -Sequential Importance Sampling (SIS) algorithm + Resampling

Developed particle filter

-Estimates the attitude of the RSO at a specific time

-**Pseudo-batch algorithm**

- Selects measurements from light curve subtracks
- Updates particle weights according to the RMSE
- Advantage: reduces the occurrence of local minima
- **Reinitialisation** in the first iteration
	- Moves particles with higher RMSE to regions of higher probability
	- Recomputes the weights of the new particles
	- Advantage: refines the initial posterior PDF

Generic vs. developed particle filters

Generic (sequential) PF Pseudo-batch PF

Yaw and pitch angles

Yaw [deg]

Pitch and roll angles

Pitch [deg]

 -50 $\overline{0}$

 -50 $\overline{0}$ -50

 θ

 $50[°]$

Advantages

Less local minima Higher accuracy Better computational performance Noisy real measurements

Very high flexibility

High-fidelity simulator of photometric observations

-GMV's *Grial* tool, implemented in Java using OpenGL.

- Calculates contributions to reflected light from each illuminated and visible pixel on a 3D shape and aggregates these contributions

- -Bidirectional Reflectance Distribution Functions (BRDFs)
	- Cook and Torrance (specular reflection)
	- Lommel-Seeliger (diffuse reflection)
- Post-processing of the posterior PDF
	- Cluster analysis to identify the modes of the resulting posterior PDF
	- Clustering algorithm: Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
	- -Analysis of PDF modes to identify the most probable attitude

Previous considerations

General considerations

- -Estimate the initial attitude of an RSO from simulated observations
- -Assume that the RSO's shape, size and surface optical properties, as well as the AOD, are known
- Assume that the uncontrolled RSO follows a spinning attitude law over the tracking duration
- Spinning attitude law parameters: RSO's orientation, spin rotation axis and spin angular velocity
- -Additional assumptions:
	- Spin angular velocity can be estimated using a period-finding method (e.g. Lomb-Scargle periodogram)
	- In the long-term, the RSO eventually rotates about its principal axis of maximum inertia (flat spin)
- **RSO model properties**
	- Low Earth Orbit (LEO) at an altitude of 2000 km
	- Satellite's platform optical properties: $K_d = 0.15$, $K_s = 0.7$
	- Solar array optical properties: $K_d = 0$, $K_s = 0.1$

Results

Case 1: unimodal posterior PDF

Case 1: light curve

Attitude: $x_0 = [71, -58, 19]$ deg Sensor noise: $\sigma = 0.1$

Case 1: particle filter execution

Initial uniform distribution

Initial uniform distribution

© GMV Property – All rights reserved **Page 19** Page 19

 $g_{\mathcal{W}}$

Case 1: particle filter execution

 PF iteration number = 1

 PF iteration number = 1

© GMV Property – All rights reserved **Page 20** Page 20

 $g_{\mathcal{N}}$

Case 1: particle filter execution

 PF iteration number = 2

 PF iteration number = 2

Case 1: particle filter execution

 PF iteration number = 5

 PF iteration number = 5

Case 1: particle filter execution

 PF iteration number = 10

 PF iteration number = 10

© GMV Property – All rights reserved **Page 23**

 $g_{\mathcal{N}}$

Case 1: particle filter execution

 PF iteration number = 15

 PF iteration number = 15

© GMV Property – All rights reserved **Page 24** Page 24

Case 1: cluster and posterior PDF analyses

True attitude: $x_0 = [71, -58, 19]$ deg

Mode 1

- $W = 0.92$ $W_N = 1.5 \times 10^{-4}$
- $x_0 = [71.75, -57.54, 18.74]$ deg
	- $\sigma = [0.03, 0.02, 0.04]$ deg

Mode 2

- $W = 0.08$ $W_N = 1.5 \times 10^{-4}$
- $x_0 = [84.43, 44.25, 52.91]$ deg
	- $\sigma = [0.09, 0.09, 0.10]$ deg

Case 2: multimodal posterior PDF

Case 2A: light curve

Attitude: $x_0 = [18, 37, -12.5]$ deg Sensor noise: $\sigma = 0.1$

Case 2A: particle filter execution

Initial uniform distribution

Initial uniform distribution

© GMV Property – All rights reserved **Page 28**

 \bm{g} n

Case 2A: particle filter execution

 PF iteration number = 1

Case 2A: particle filter execution

 PF iteration number = 2

 $P_{itch}^{\left[-50\right)}\left(\frac{50}{\left<\deg\right>}\right)$

 PF iteration number = 2

Roll [deg]

Case 2A: particle filter execution

 PF iteration number $= 5$

Yaw and roll angles

 PF iteration number = 5

Yaw and pitch angles

© GMV Property – All rights reserved **Page 31** Page 31

Case 2A: particle filter execution

 PF iteration number = 10

 PF iteration number = 10

Case 2A: particle filter execution

 PF iteration number = 15

 PF iteration number = 15

Case 2A: cluster and posterior PDF analyses

Case 2A: simulated light curves for the relevant modes

Case 2B: light curves from 2 ground stations during the same time interval

Attitude: $x_0 = [18, 37, -12.5]$ deg

Sensors noise: $\sigma = 0.1$

GS 2: 30° N, 15° E w.r.t. GS 1

Ground station 2

Case 2B: light curves from 2 ground stations during the same time interval

■ Case 2B: light curves from 2 ground stations during the same time interval

Case 2B: particle filter execution

Initial uniform distribution

Initial uniform distribution

© GMV Property – All rights reserved **Page 39** Page 39

 $g_{I\!R}$

Case 2B: particle filter execution

 PF iteration number = 1

© GMV Property – All rights reserved **Page 40** Page 40

Roll [deg]

Case 2B: particle filter execution

 PF iteration number = 5

 PF iteration number = 5 Yaw and pitch angles Yaw and roll angles

© GMV Property – All rights reserved **Page 41**

Case 2B: particle filter execution

 PF iteration number = 10

Case 2B: particle filter execution

 PF iteration number = 15

Case 2B: cluster and posterior PDF analyses

True attitude: $x_0 = [18, 37, -12.5]$ deg

Conclusions and future work

Conclusions and future work

Conclusions

- Understand the challenges of light curve inversion for attitude estimation
- Identify the limitations of sequential particle filters
- Develop the pseudo-batch particle filter with reinitialisation
- -Analyse simulated test cases with single and multimodal posterior PDFs
- Use stereoscopic measurements to mitigate measurement ambiguities

Future work

- Improve the computational performance of the particle filter
- Relax assumptions regarding the RSO's attitude law and physical properties
- -Extend analyses using real light curves

Jorge Rubio Antón

jorge.rubio.anton@gmv.com

This project has received funding from the "Comunidad de Madrid" under the "Ayudas destinadas a la realización de doctorados industriales" program (project IND2023/TIC-28739)

© GMV Property – All rights reserved