

Spacecraft Beacons: radiocommunication approaches towards interoperable autonomous self-identification and tracking

09. October 2024, Clean Space Days, ESTEC

Sebastian Lange
Chair of Space Technology
Technische Universität Berlin (TU Berlin)

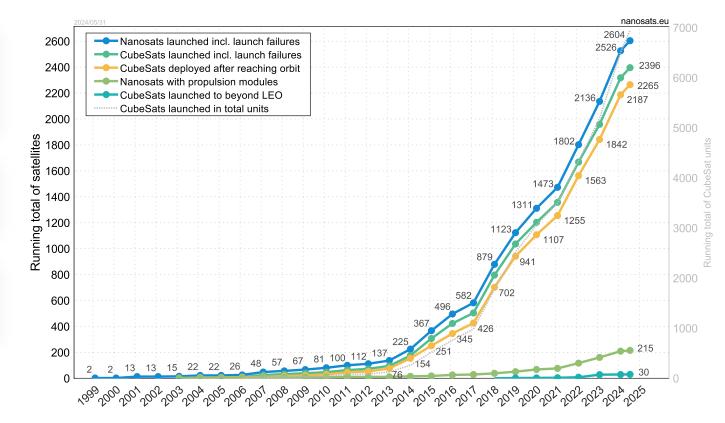
Chair of Space Technology

Satellite missions

- In orbit: 19 missions with 30 satellites
- 2 constellations, 2 swarms
- 375 g 22.5 kg ... 50 kg (upcoming)
- Planned: 4 missions with 4 satellites

Exploration technologies

- Planned: 1 experiment on lunar surface
- Multiple platforms, e.g.
 - TUBiX5
 - TUBiX20



Current State: Smallsat (R)evolution

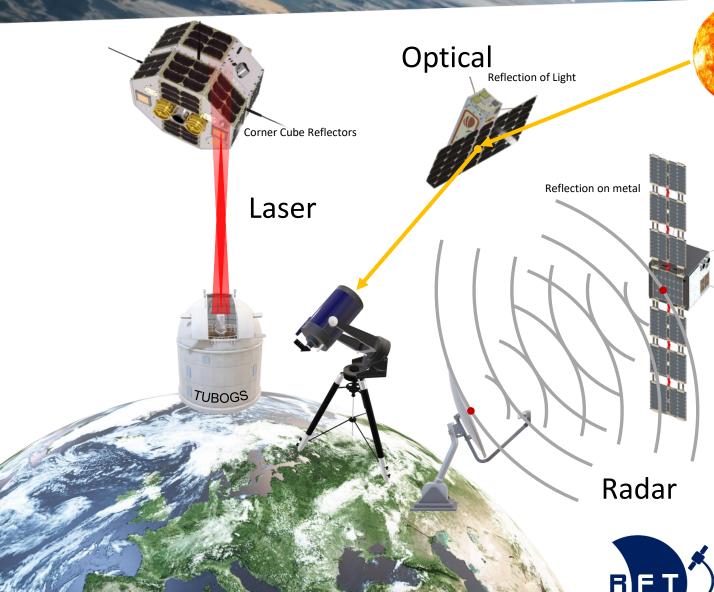
- Exponentially increasing number of objects
 - Projections for coming decade: tens of thousands to millions
- Mainly stochastic traffic management via orbital lifetime
- ▶ No interoperable passive tracking system
 - Left to operators themselves

Total nanosatellites and CubeSats launched

Source: https://www.nanosats.eu/img/fig/Nanosats_total_2024-05-31.svg

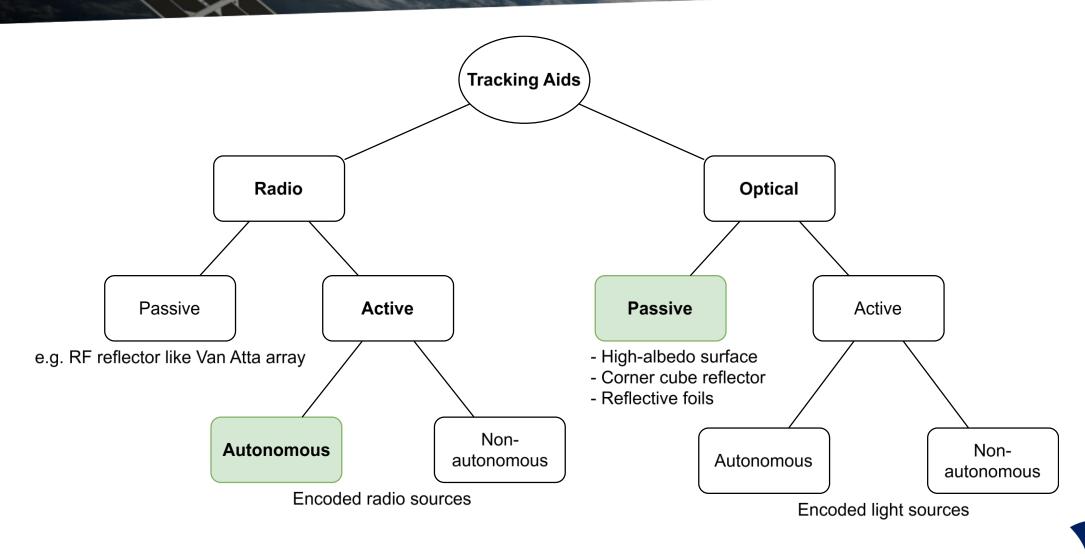
Current State: Detection and Identification

Limited identification of space objects


- Characteristics of reflection(s)
- Radio transmissions
- Separation parameters

Challenges

- Manual processes, difficult to automate
- Identification takes days, months or forever
- Limited tracking capabilities and capacities of radar systems


► EU Space Surveillance & Tracking (SST, 2021)

Merging European sensor data

Tracking Aids: Overview

Motivation

Closing gaps to radar systems

- Trackability
- Information: identification, status etc.
- Scalability

Features

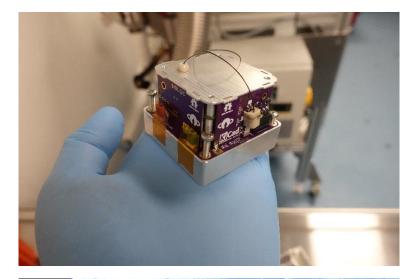
- Facilitate first contact till re-rentry with information
- Simplify emergency intervention (optional)
- Trigger End of Life (EOL) disposal (optional)

Sustainability

- Economic: protection of space assets
- Ecological: avoidance of space debris
 - Sustainability and security goals (national, ESA, EU, UN)

Approaches to date

System	Developer	Origin	Shape	Modulation	Freq. Band	Lifetime	License
Black Box	NSL	USA	Three versions	(W)CDMA Globalstar	1600 MHz	autonomous	proprietary
Blinker	Aerospace	USA	Side Panel Box	FSK?	915 MHz (ISM R2)	autonomous	proprietary
CUBIT	SRI	USA	Elec.+Ant. Unit	FSK?	915 MHz (ISM R2)	30 days	proprietary
OWL	C3S	ESA/HNG	Tuna Can	FSK?	137 MHz	18 hours	proprietary
RILDOS	Kratos et al.	USA	Specs only	DSSS BPSK	TM Inband	none	open
SIDLOC	LSF	ESA/GRC	PocketQube	DSSS BPSK	401 MHz	autonomous	open

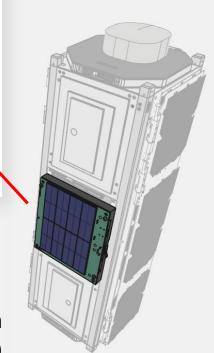

SIDLOC (Satellite IDentification and LOCalization)

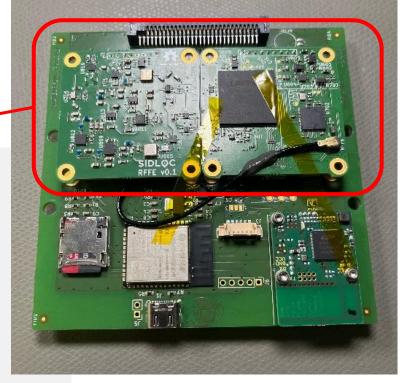
Libre Space Foundation (LSF)

- Manifesto: 5 principles, 4 pillars incl. open knowledge
- Multiple ESA and FOSS community projects
 - Satellite Networked Open Ground Station (SatNOGS)

SIDLOC scope

- Identification and tracking via Doppler shift measurements
- Proposed coexistence with other space operations
- Project state:
 - Successful on-orbit verification of principle with Ariane 6
 - See FOSDEM presentation^[1]





SIDLOC-BEECON: Mission Overview

Mission schedule 2024-2026

Mission	Ops	Launch	Spacecraft
Ariane 6	LSF	2024-07-09	2 nd Stage
InnoCube	TUB	01/2025	3U CubeSat
Erminaz	LSF	06/2025	PocketQube
UARX	LSF	06/2025	PocketQube
PHASMA	LSF	06/2025	3U CubeSat
QUEEN	TUB	Q4/2026	64U "Cube"

InnoCube Beacon Hardware (approx. 90x45x10 mm³)

PHASMA Beacon Design (approx. 97x83x9 mm³)

BEECON (Berlin Experimental and Educational Beacon)

Objective

European cooperation → International solution

Challenges

- Regulatory frameworks: National, CEPT, ITU
- Technical development: miniaturisation, energy efficiency, low cost, fail-safe, simple integration
- Harmonisation/standardisation: which bodies?
- Adoption

- Simple plug&play attachment
- No expensive and time-consuming coordination

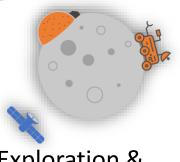
Summary & Outlook

Where are we?

- First approaches and flight experiments
- Distinct companies and communities
- No interoperable autonomous self-identification and tracking
- We're at the very beginning!

How to proceed?

- More technical development, experiments and public results
- Technical harmonisation and standardisation important
- Frequency band(s) not subject to coordination mandatory
- Usage of open standards most promising path
- Collaborate and contribute on European and global level!

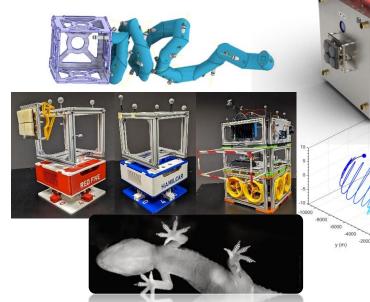


Further information ... ©

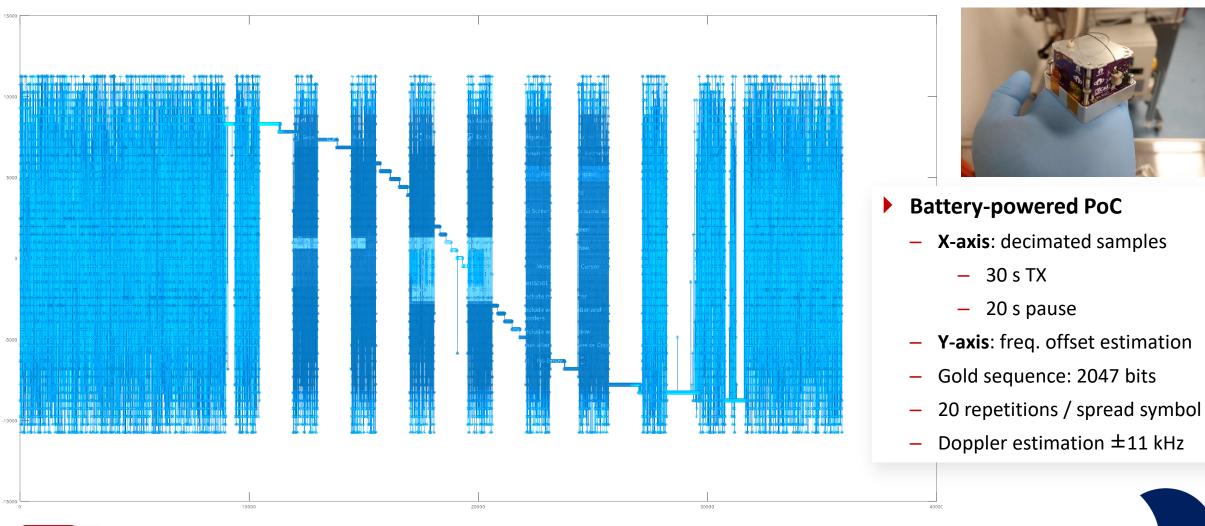
Chair of Space Technology

Exploration & Propulsion

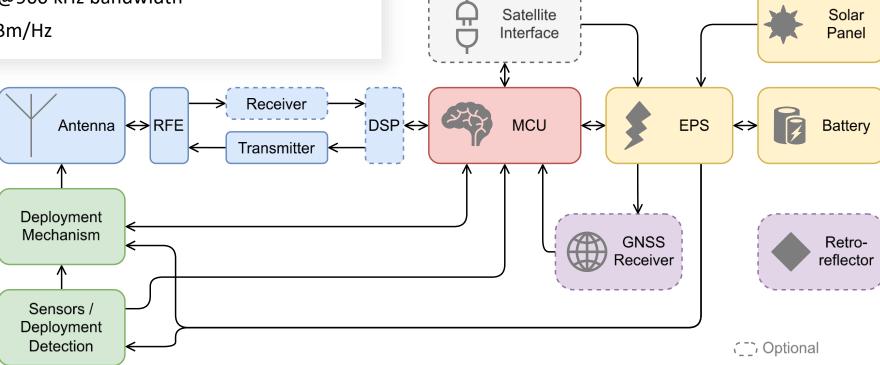
Distributed Space Systems



SmallSat Rendezvous & Robotics



SIDLOC-AR6 Experiment



SIDLOC-BEECON: Technical Overview

Design goals 2026

- Transmit unique satellite ID (optional: location, satellite status)
- Self-contained system within 50x50x6 mm³
- Avg. power budget: 40 mW
- RF peak power: 400 mW @900 kHz bandwidth
- RF power density < -33 dBm/Hz

Radiocommunication: Regulatory

Past

1959: First Space services in RR

1968: Art. 5, 30.005-30.010 MHz SPACE (Satellite identification)

Present

- 2019: "ITU-R's contribution in implementing the outcomes of the World Summit on the Information Society and the 2030 Agenda for Sustainable Development" (Res. 61-2, Radio Assembly RA-19)
- 2022: "ITU's role in the implementation of the "Space2030"
 Agenda" (Res. 218 and 219, Plenipotentiary Conference PP-22)

...

Radiocommunication: Regulatory (cont.)

> 2023 (RA-23)

- Proposed Study Question (SQ) not adopted: "Studies related to possible radiocommunication solutions for the identification and tracking of spacecraft [and debris]"
- Res. ITU-R 74: "Activities related to the sustainable use of radiofrequency spectrum and associated satellite-orbit resources used by space services"

2024 (RA-27)

- Study Group (SG) 4, Working Party (WP) 4A tasked with ITU-R 74:
 - 1. Technical activities in all SGs
 - 2. Handbook on best practices
- Reply Liaison Statement from SG 7, WP 7B:
 - noting it covers space radiocommunications applications,
 - encouraging members to provide contributions

