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Current Space Landscape: Exponential Increase of Activity

❑ Not only launches but also number of 

payloads has drastically increased 

over the last years (2019-2023):

✓ +118% launches

✓ +540% payloads

❑ Payload ratio has more than tripled 

since 2019 to reach 12.54% in 2023

✓ More efficient propulsion systems

✓ Miniaturization

❑ Need to assess and mitigate the 

impact of Space Activities

➢ 1kg of Diesel → 0.8 kg of CO2

➢ 1kg of Hydrazine → 32 kg of CO2

➢ 1 kg of MMH → 55 kg of CO2
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General Framework: IN-ORBIT Propellants Selected
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Hypothesis Made

Hypothesis made LCA-wise

❑ data from the ESA database v1.2.0f, Ecoinvent v3.9.1 and 

analysed with SimaPro v9.4.0.3.

❑ Cut-off allocation is used.

❑ Infrastructures are excluded.

❑ Long-Term Emissions are included.

❑ Component losses from production to gate is estimated to 

10%, however, this does not represent the amount of 

propellant targeted for decontamination and waste 

treatment which is instead considered constant after each 

use of the pipes.

❑ After fuelling operations, unused propellant quantities are 

transported back to the contractor and stored for another 

use. However, since the spare propellant is not always 

used for another mission, the production of unused 

propellant quantities was included into the system 

boundaries.

Hypothesis made Propulsion-wise

❑ Considers only the tank flight model, not the 

development of the qualification route (significant 

assumption given that tanks computation is fine-tuned to 

the system and do not rely on existing tanks)

❑ Thickness of the liner is assumed constant and “average” 

of the real one, only to compute what input material is 

necessary. CFRP holds the whole pressure.

❑ Titanium tank manufacture route is taken as baseline

❑ Use of the fuelling room S5B is used for all propellants but 

with different equipment

❑ Decontamination operation includes only cleaning the 

line and not the part where lines are sent back to Europe 

for deep-cleaning

❑ Passivation of components is missing for HTP, 

together with a more stringent preparation/decontamination 

procedure
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AHP-derived Weights for the Midpoint Indicators
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Comparison with the Weights used by PEF
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The Ground Life Phases: from Production to Gate

Production

Storage

Transport

Handling

Testing

Fuelling 

Loading

Two types of data:

❑ The one assessing the impact of production phase 

only

❑ The one assessing the impact of cradle-to-gate life 

cycle, i.e. including all the ground life phases until 

loading in the space system

Phase Contribution:

Without Decontamination, the propellant production is by far 

the most impactful (~90%) of the life phases for MON-3 and 

HTP while the losses between production and fuelling are the 

most impactful for N2O (high-GWP).
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System Boundary of Propellant Loading alone – 1 kg
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System Boundary of Propellant Loading for the Mission

Oxidizer 

Production

Fuel 

Production

Storage Storage

Transport

to CSG 

Transport

to CSG

Loading

Space 

System

Unused 

Propellant

Lines 

Decontamina

tion

Storage

Transport

back

Waste 

Treatment

Waste 

Treatment

Storage for 

another use

System Boundary

Lines EU 

deep cleaning



13

LCA OUTPUT – Production of 1 kg of Propellants

   

  

   

   

   

   

   

   

   

   

   

    

                                             
                      

                                            

❑ The production of 1 kg of MMH has 

the highest environmental impact 

across all categories, attributed 

primarily to:

o High energy demands 

required for its production

o Its specialized, small-scale 

manufacture for space 

applications
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OUTPUT – Production of the Propellants for the mission

❑ High O/F ratio of the “greener” 

option makes the total weight of the 

propellant combination led by the 

impact of the oxidizer

❑ This impact is “higher” for N2O in air 

emissions and water quality 

indicators due to its production 

process relying on ammonia 

oxidation:

➢ Emission of ammonium ions 

in water

➢ Emission of NO species in air
  
  

   

  

  

   

   

   

   

   

   

   

   

   

    

                                                
                                                 

                                             

Isp

[s]

Densities

[kg.m-3]
Ideal O/F

MON-3/MMH 325 1440/875 1.65

98% HTP/RP-1 305 1437/800 7.5

98% HTP/Ethanol 300 1437/789 4.5

N2O/Ethane 295 785/340 7.0
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OUTPUT – Loading of 1kg of Propellants

❑ Loading shifts the contribution

❑ MON3/MMH still the most impacting

❑ But Nitrous Oxide shows a non-

negligeable overall impact due to its 

contribution to GWP (due to losses 

in storage → GWP gas emissions)
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OUTPUT – Loading of the Propellants for the mission
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Baseline architecture tuned to the Propellants

❑ Each propellant combination has a specific architecture, fine-tuned to its properties (components, material). The self-

pressurized one gets rid of all the dashed line (i.e. all the pressurization elements). 

❑ The architecture is sized to the GEO mission scenario

MON-3 &

MMH

98%HTP &

Ethanol 

or RP-1

N2O &

Ethane

Oxidizer 

Tank

1

Cyl.

TiAl6V4

1

Cyl.

AA5254 with 

CFRP Overwrap

1 

Cyl.

C. Fiber with 

TiAl6V4 liner

Fuel Tank

1

Cyl.

TiAl6V4

1

Cyl.

AA6060 with 

CFRP Overwrap

1 

Cyl.

C. Fiber with 

TiAl6V4 liner

Pressurizing 

He Vessel
2 2 None

Filters 4 4 2

Pyro Valves 2 2 None

Vent valves None 2 2

Fill & Drain 

Valves
4 4 2

Latch 

Valves
2 2 2

Cavitating 

Venturi
2 2 2

Pressure 

Transducers
6 6 2

Pressure 

Regulator
2 2 None

High P. Gas 

Valve
2 2 None

T. & P. 

Sensors
6 6 4

Solenoid 

Valves
20 20 20

Main 

Thrusters
5 5 5

Tubbing Titanium Aluminium Titanium
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Impact of the Architecture vs 

Propellant Loading
  
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

  
 

 
 
 

 
 
 

 
 
  
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
  
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

  

   

   

   

   

   

   

   

   

   

    

                                                     
                                         

                                                                   

❑ In pressurized HTP-systems, the manufacturing of the dry architecture 

contributes to approximately 95% of the total environmental impact

❑ In contrast to 64% for both the MON3/MMH and self-pressurized systems

❑ Architecture-wise, the self-pressurized is the most environmentally-friendly
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Impact of the whole propulsion system

  
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

  
 

 
 
 

 
 
 

 
 
  
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
  
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

  

   

   

   

   

   

   

   

   

   

    

                                                     
                                         

                                                                   

  
 

 
 
 

 
 
 

 
 
  
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
  
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

  
 

 
 
 

 
 
 

 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

  

   

   

   

   

   

   

   

   

   

    

                                                     
                                         

                                                                   

❑ Considering the whole system, the self-pressurized option is the most environmentally-friendly in terms of total impact

❑ But it would score low looking only at GWP → danger of reducing environmental impact to CO2 emissions
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Comparison of System-wide Propulsive Options LCA

✓ Considering only propellant impacts, 

HTP-based systems are the greenest 

(due to the GWP impact of N2O)

✓ Considering the whole system, the 

self-pressurized option stands out as 

the greenest option

✓ Both HTP-based and N2O-based option 

CAN be labelled as green
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Conclusion & Ways Forward

✓ LCA should be performed to get a full picture of the environmental 

impacts, uncovering hotspots, avoiding burden shifting and aiming 

for improvements (i.e. eco-design)

✓ Greener propellants does not mean only “less toxic”

✓ Out of the propellants studied, single score LCA indicates the self-

pressurized combination N2O/Ethane as the most eco-friendly 

combination but the second worst one in terms of GWP

✓ Greener propellants is good but most of the impact is hold by the 

architecture → emphasis on green MAIT 

✓ Multiple use (reusable & refuelling) would be beneficial

✓ While is it currently difficult due to the lack of data, LCA should be 

applied as early as possible in the mission definition phases when 

the design is still flexible

 

Recommendation for future activity:

❑ Broader data collection survey

❑ New studies to include new propellants and manufacturing 

processes → more accurate scenarios

❑ Importance of Green MAIT

DESIGN CHOICE ENVIRONMENTAL 
IMPACT

Questions?

Reach out to Lily Blondel Canepari: 

lily.blondel@ing.unipi.it

mailto:lily.blondel@ing.unipi.it
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