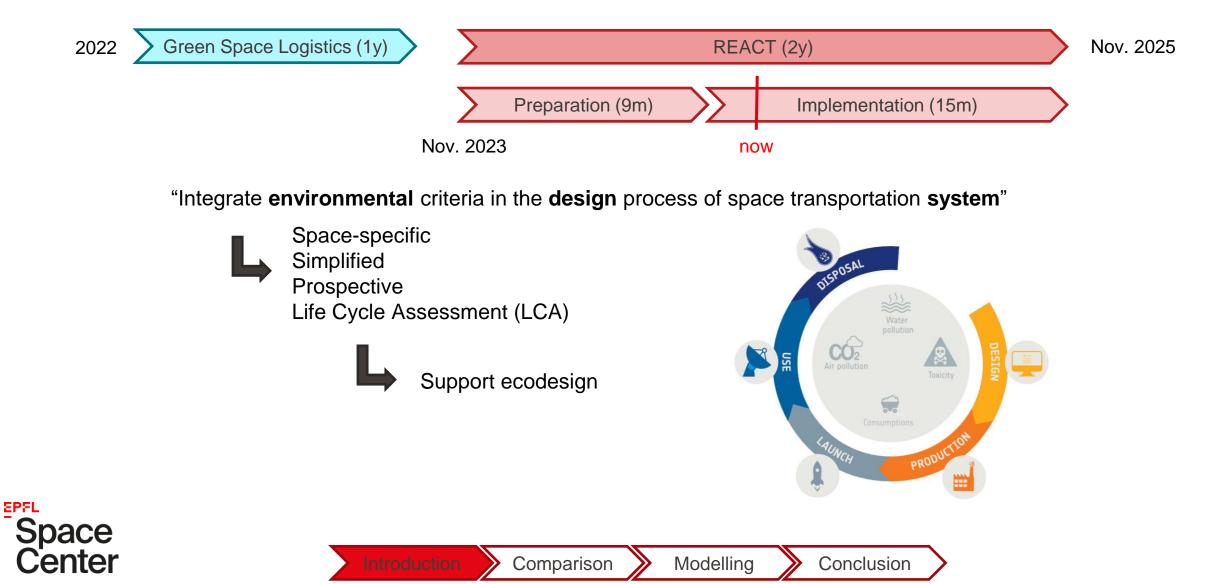


The Assessment and Comparison Tool

Status and next steps for the simplified, space-specific, prospective LCA tool

ATELERIS

Space Center Mathieu Udriot (<u>mathieu.udriot@epfl.ch</u>) With the help of the REACT consortium

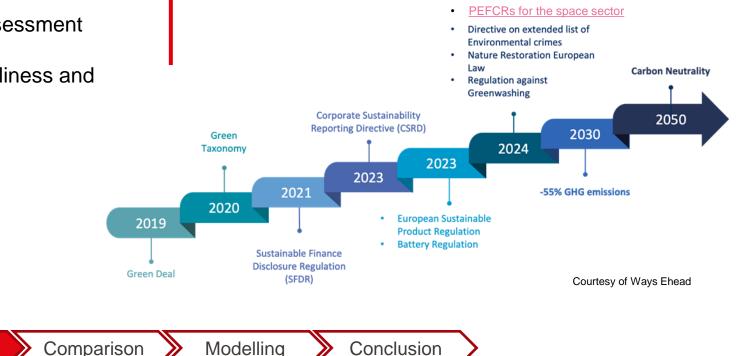


2

Development of the Assessment and Comparison Tool (ACT)

Project Assessment and Comparison v1

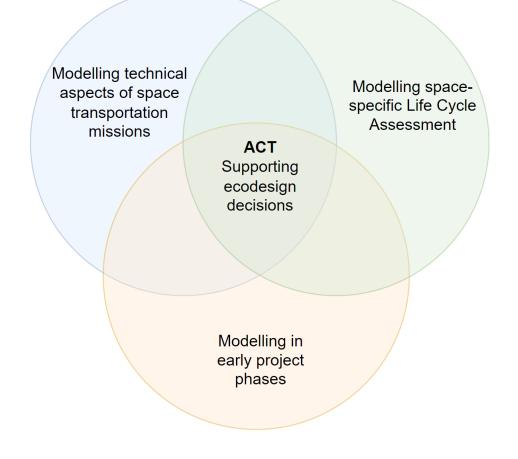
Create Configuration													
_								2.80e+6	5				
Stage						Continue Save Configuration							
3 Select Scenario	2 Select STV Blocks	3 Cor	figure Mission	Assign Related Blocks		Configure Logistics				Vulcain 2 - 1 chamber (estimat			
Select Scenario								2.10e+6		impact : 2.7207e+6	and intergrately		
Expendable Launch Vehicle		Reusable Launch Vehic	le		Active Debris Remov	val Satellite							
Template - Estimated Vega C with SSO trajectory	~	Template - Estimated Th	emis T3 🗸		Template - Estimated	ClearSpace 1 on an estimated Ve V		quir					
Defaults from Template - Estimated Vega C with SSO trajectory		Defaults from Template - Estim				timated ClearSpace 1 on an estimated Vega C		r 1,40e+0					
Lower Stage	0	Fairing	0		Lower Stage	0		1.400					
Orbital Stage	0	Lower Stage	•		Orbital Stage	0		4					
Fairing	0	Orbital Stage	Create Configuration Name test		Orbit Type Comment *500x500 km, 88**	0							
Select			Stage					7.00e+5	5				
			Select Scenario	Select STV Blocks		Configure Mission	Assign Related Blocks						
			Select STV Blocks	-			-						
				elected Blocks		Available Bio	ecka	0.00e+0	A5 ESC - Etage S Emissions A5 EPC - E	tage P Vulcain 2 · 1 ch AS EAP · Etage A	A., MPS - Moteur Pro A5 EAP - Etage A	MPS - Moteur Pro A5 Fairing (esti	HM7B engine (est
L	Mrs. Building Blacks		Lower Stage		Sub-asser			L			ngon.		
	My Building Blocks		VC P120C - first stage (estimated template)		Remove VC Inter	Stage Structure (estimated template)	Add]					
	Lower Stage		VC Z40 - Zefiro 40 (estimated template)		Remove Lower Sta	19e		=					
	Default Building Blocks	Create Building Block	VC Z9 - Zefiro 9 (estimated template)		Remove A5 EPC -	Etage Principal Cryogénique (estimated template)	Add						
	A5 EPC - Etage Principal Cryogénique (estim	Select a template	Fairing		T3 first st	tage (S1) - Reusable (estimated template)	Add	1					
		Lower Stage / A5 EPC - Etage P	VC Fairing (estimated template)			Zefiro 40 (estimated template)	Add	_					
	T3 first stage (S1) - Reusable (estimated tem		Orbital Stage VC AVUM+ - Attitude Vernier Upper Module (estimate	of template)		Etage Accélération à poudre (estimated template)	bh	- 1					
	VC Z40 - Zefiro 40 (estimated template) General Parameters		C AVONT - Autome verner opper moudle (esumer	na tempator)	VC P120	VC P120C - first stage (estimated template) VC 29 - Zefiro 9 (estimated template)							
	AS EAP - Etage Accelération à poudre (estim	Description Etage principale cryogéniq	string 14,700	kg 184,700 kg		kg 23.8	bia .						Value 1 - 1 chards
	AS EAP - Etage Acceleration a poudre (estim	i sing icro	ng 184,760 Ng	170,000	19 23.8	m						Vulcain 2 - 1 chambe 2.6243e+6	
	VC P120C - first stage (estimated template)	Usable diameter approx 5.4											
	VC Z9 - Zefiro 9 (estimated template)	m										MPG - Moteur Properg 1.8017446	
		manufacturing and testing					Create		LCS 26 - Propellant 0.5135e+6	Providen			
	Kick Stage	manufacturing and testing								6.30356+6		1	
	Default Building Blocks	7,150	kg Aluminium generic part AA 2219,				Remove Material		8 4 9 5 9 5				MPS - Molaur Properg 1.8217e+5
	Fregat kick stage (estimated template)							ate					1.8217646
	Propulsion	100	kg Stainless steel 440b (X 90 CrMo	V Add Processings			Remove Material						Activities below outoff 2.3001e+5
		6,250	kg Aluminium generic part AA 7075,				Remove Material	_					AS EPC - Etage Princ 8.8341e+5
	Default Building Blocks	1,0W	-g Automatin generic part AA 70/3,				Manore Material			LCS 1 - STV componen 2.8756e+6	Lower Diago 2.3225e6		AS EAP - Etage Accel 7.7954e+5
	RD-843 for AVUM + (estimated template)	1,000	kg Harness, wire, RER	V () V Add Processings			Remove Material	ate			2.3225#+6		AS EAP - Etage Accoll 7.7954c+5
PFL	Zefiro 40 engine (estimated template)	200	kg DHS Spacecraft management uni.				Remove Material	ate					7.1954e+5
Chase			ng uno spececran management uni.										
Space Center	55.92 for Fregat (estimated template)						Discard Save no	ape					
Contor	Zefiro 9 engine (estimated template)		Template T3 reused S1 trajectory (estin	nated template)	Template	ADR servicer - EOLM from LEO (estimated	template) Temp	ate					
													,


REACT Project **REACT - Users' needs and motivations**

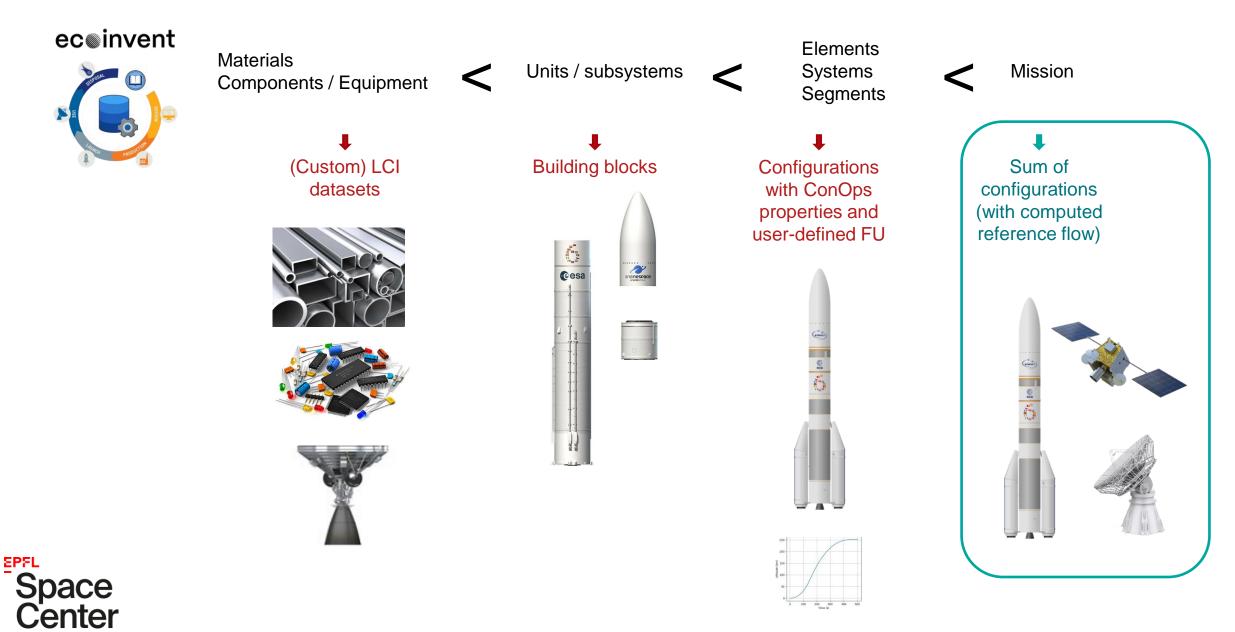
Internal

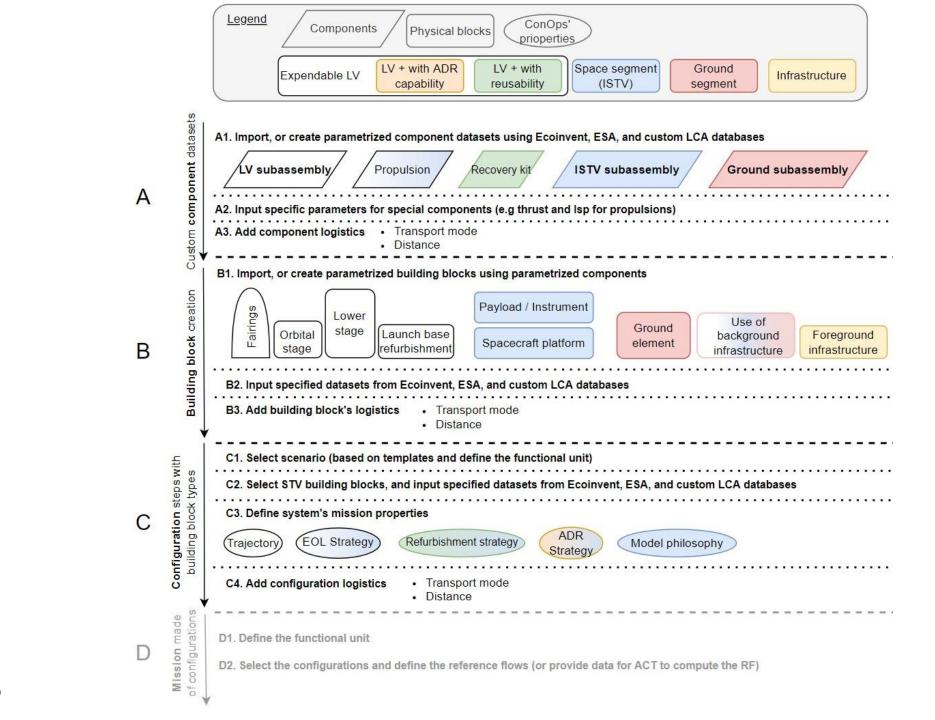
- Find environmental **hotspots** and key parameters
- **Design** systems with lower environmental impacts ("System-push" or "technology-pull")
- Create a commercial advantage / communicate
- Lack expertise in environmental assessment (company's **size** and resources)
- Easy adoption thanks to user-friendliness and acceptable learning curve

External (constraints)

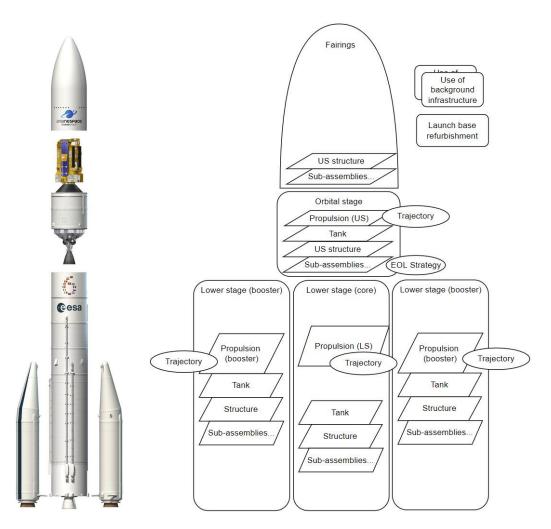

- Anticipate / comply to regulatory trends in Europe
- Adapt simplified LCA tools in other sectors
- Fulfil environmental requirements (from agencies)

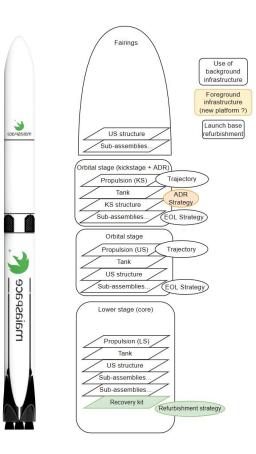
Project Unique Selling Point


- Understanding users' requirements
- Internal needs and external constraints
- Describe new features for the v2



Project Modelling technical aspects of STVs

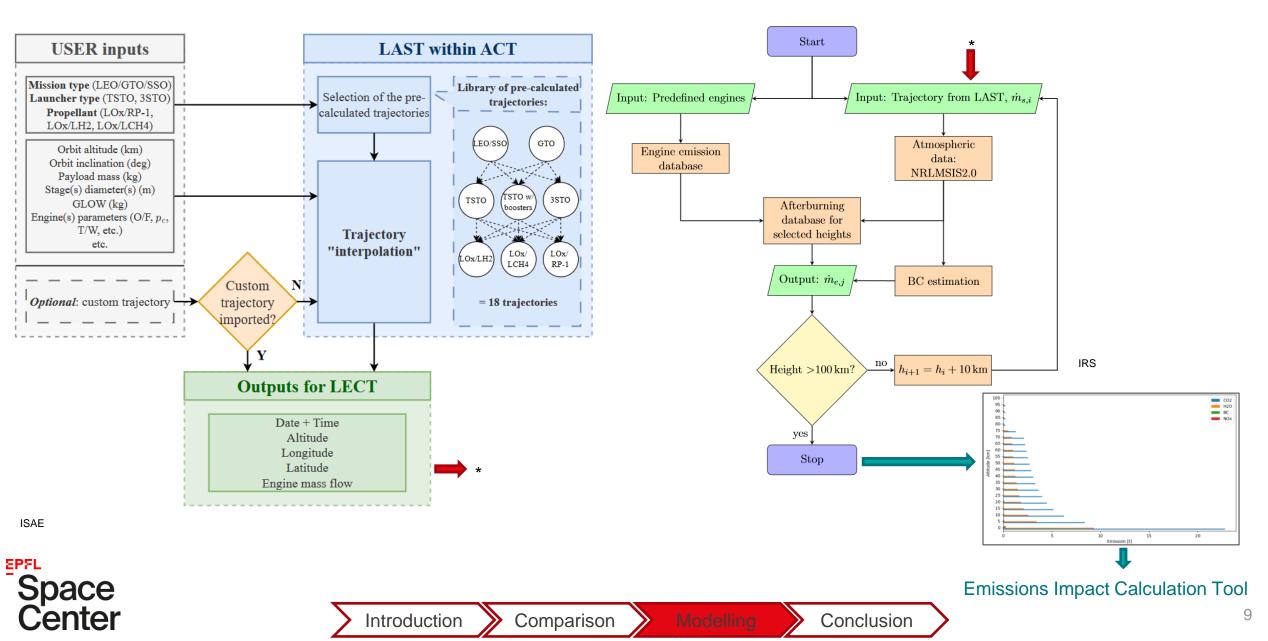


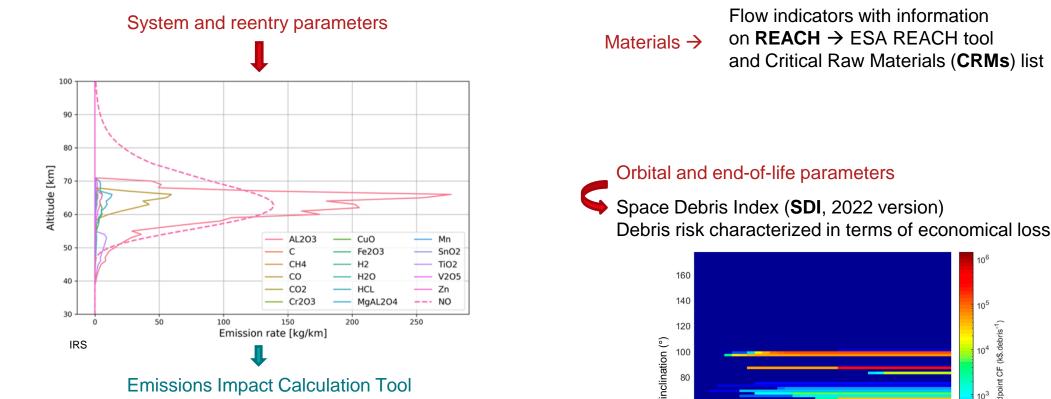


REACT

Project

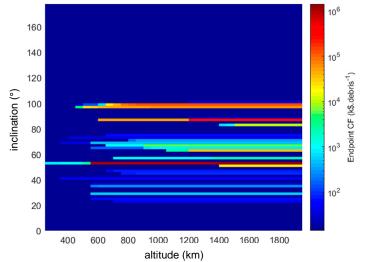
Project Modelling technical aspects of STVs





Project Modelling space-specific LCAs

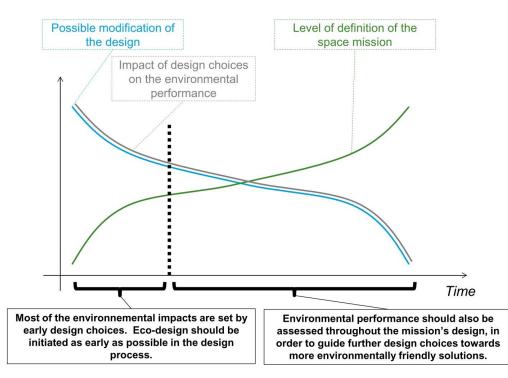
REACT **Modelling space-specific LCAs Project**


Comparison

IRS tools, models and uncertainties in more details \rightarrow Jan-Steffen's presentation just after this one...

Introduction

Debris risk characterized in terms of economical loss with unit [kilo \$]



Conclusion

Maury-Micolier, T., et al. (2022). A new impact assessment model to integrate space debris within the life cycle assessment-based environmental footprint of space systems. Frontiers in Space Technologies, 3. https://doi.org/10.3389/frspt.2022.998064

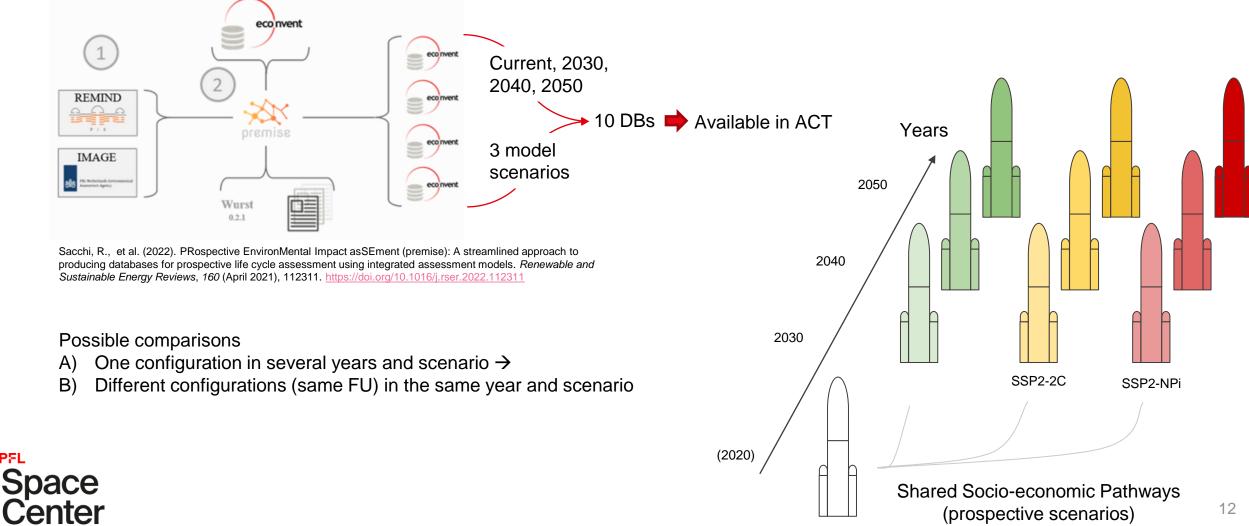
Project Modelling in early design phases

Augustin Chanoine et al. Integrating sustainability in the design of space activities: development of eco-design tools for space projects. Tech. rep. 145. 2015.

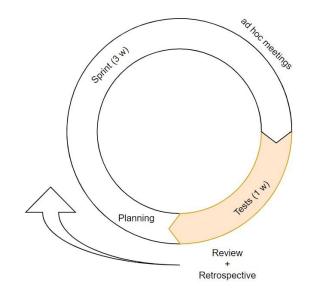
- Ecodesign needs to happen in early design phases
- But data availability is still low
- **Prospective** data is useful (IAMs)
- LCA is often used to support ecodesign
- Comparisons in relative values > absolute values
- Collaboration between technical team and LCA expert
- Engineers shall identify *actionable* ecodesign recommendations (vs number of suppliers?)

 \rightarrow iterations, data quality rating, sector-specific impacts, etc.

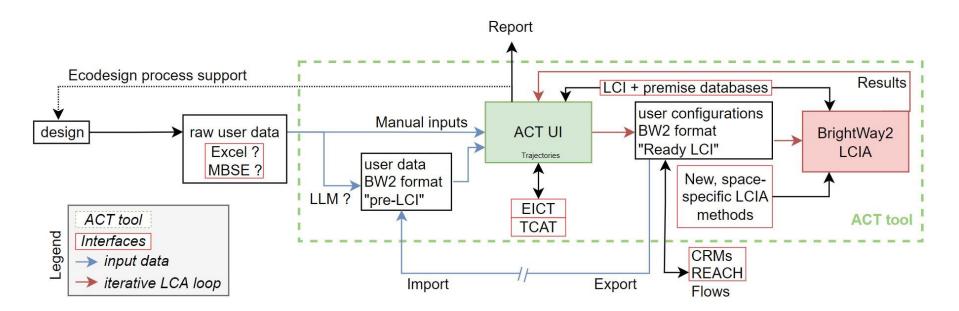
ACT is intended for early phase but user input granularity can evolve along the project !



REACT **Prospective data Project**


EPFL

The world will look different in future. Integrated Assessment Models (IAMs) model scenarios, e.g. for IPCC with regards to mean global temperature rise and related policies.


Premise couples the IAM with ecoinvent and the ESA database (background).

Project Next steps

- Iteratively develop and test features
- Stay up to date with state-of-the-art and regulations
- Test intermediate tool release with ESA and companies
- Write documentation
- Investigate connections with emerging technologies

Project Use case with ACT proof of concept

Successfully used (with known limitations) in the context of early design assessments \rightarrow see more **tomorrow 9:30am** (auditorium Erasmus)

Screening life cycle assessment of families of future reusable launchers for early-stage ecodesign considerations in the VOLARE project

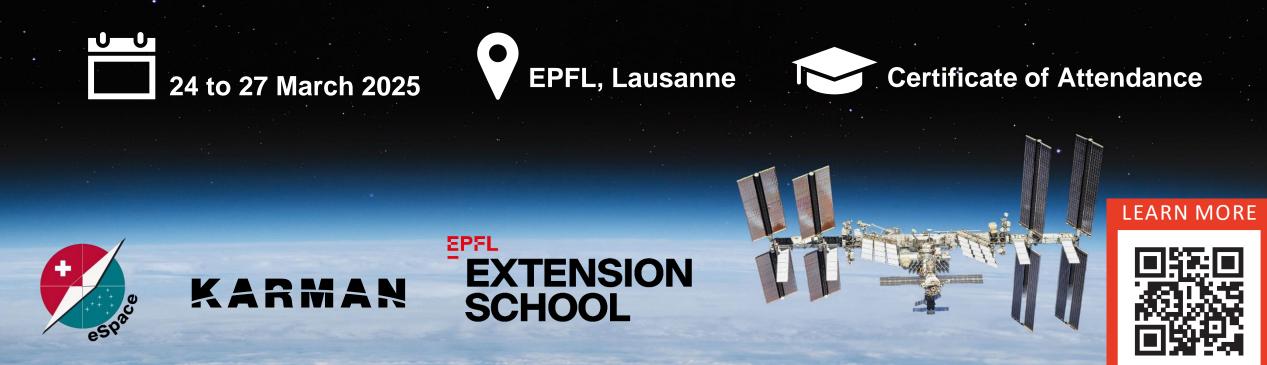
With Blandine Quelennec (ArianeGroup)

Project Conclusion and info

The Assessment and Comparison Tool enables

- Simplified, space-specific and prospective LCA
- Which lowers some obstacles
- From early phase to support ecodesign
- Knowledge, data, and methodological gaps have been identified
 → Announcement of Opportunity <u>can be shared</u>
- More tests are planned → <u>contact us if interested</u> (<u>mathieu.udriot@epfl.ch</u>)
- IAC paper "Modelling technical and environmental aspects for early phases ecodesign decision support" in session D2.9-D6.2 (18.10 at 3:15pm)

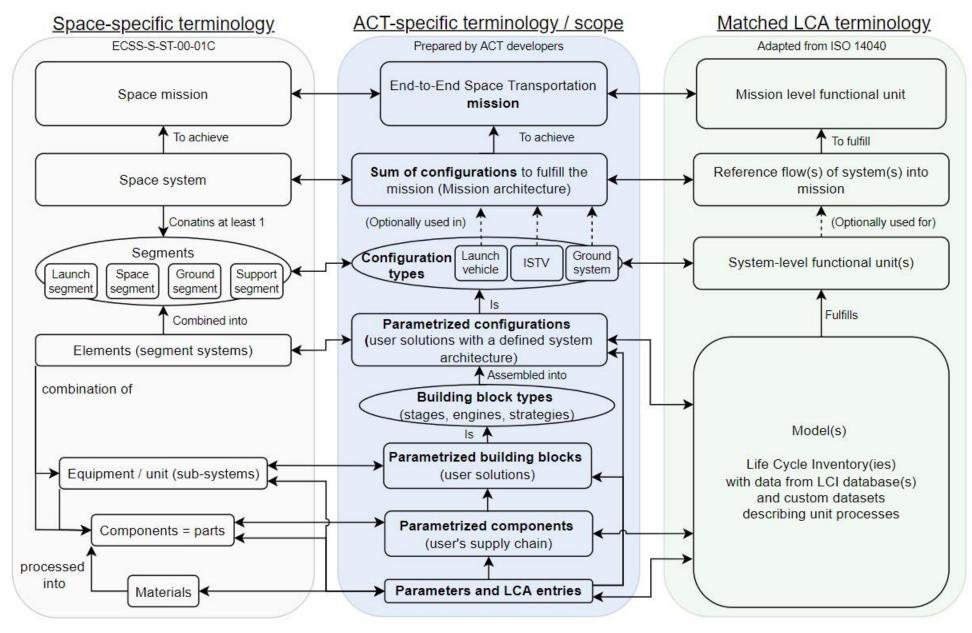
Project Thank you, any questions?



Upskilling in Space Sustainability How to design more sustainable missions?

A new course to teach learners to design and operate missions and space business with a sustainability perspective

Target audience: professionals with a few years of work experience and an interdisciplinary background including engineers, managers and policy makers


Project Upskilling in Space Sustainability How to design more sustainable missions?

https://espace.epfl.ch/education/space-sustainability-course-how-to-design-more-sustainable-missions/

Project Backup

Space Center

LCA simplification approaches

Simplification approach *	ESA LCA handbook (2016)	ACT v2					
1. Partly or fully ignoring upstream and/or downstream processes	LCAs are cradle-to-gate for level 2 LCAs. Space mission boundaries include space, launch, and ground segments, and all project phases from A to F. Some exclusions are possible.	Only end-to-end mission can be modeled (level 1 LCA), covering phases A to F, and the three segments. Exclusions can be tracked.					
2. Narrowing the range of environmental impacts considered	20 environmental impact indicators are considered (including 5 flow indicators, see below).	Latest version of Product Environmental Footprint (PEF) [21], (currently v3.1 with 25 impact categories). A subset of LCIA indicators is proposed to facilitate the interpretation: Global warming potential, Ozone Depletion Potential, Abiotic Resources Depletion Potential, Cumulative Energy Demand, Human toxicity, Ecotoxicity.					
3. Mixing qualitative and quantitative data	Some flow indicators (Primary Energy Consumption Potential (MJ), Gross Water Consumption Potential (m^3), mass left in space / in the ocean, mass of AI_2O_3 emissions).	Flow indicators including launch and reentry emissions (see section 5.2), and qualitative data quality assessment.					
4. Using surrogate process data (proxies).	Some proxy examples are provided	Can be done by selecting proxy datasets from the databases.					
5. Establishing showstopper criteria	Not mentioned, the model must fulfill the functional unit.	Only checking the validity of some user inputs. Technical feasibility of the system is under the responsibility of the users.					
6. Limiting the constituents studied to those meeting a threshold volume	Yes, with conditions for mass cut-off criteria that it's less than 5\% of the total mass, not listed under REACH "Authorisation List" or as a critical raw materials (CRM), or there is "no particularly high environmental or health risk" [20].	Yes, the granularity (level of detail with more or less datasets) of the model is decided by users.					
7. Cut-off	Idem as 6.	Idem as 6.					
8. Tool/database	The ESA database which is built on top of the ecoinvent database, and provides space-specific datasets to practitioners.	The ecoinvent and ESA database are available, custom databases can be imported too. ACT also support the LCIA and interpretation steps.					
9. Comparative LCA with the omission of identical elements	Not directly mentioned, omissions must be reported.	Voluntary exclusions can be listed in a table to be tracked in the report.					
10. Screening	Not mentioned.	It's the purpose of the tool: to highlight the hotspots as early as possible during the design phase.					

* Based on Katja Tasala Gradin and Anna Björklund. The common understanding of simplification approaches in published LCA studies - a review and mapping. Jan. 2021. DOI: 10.1007/s11367-020-01843-4.

To be published. Udriot, M., et al. (2024). Sustainability of End-to-End Space Transportation Missions: Modelling Technical and Environmental Aspects for Early Phases Ecodesign Decision Support. 75th International Astronautical Congress 2024.

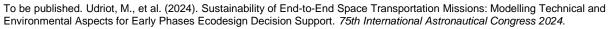
Conclusion


REACT **Comparison with other methods Project**

Comparison with other methods:

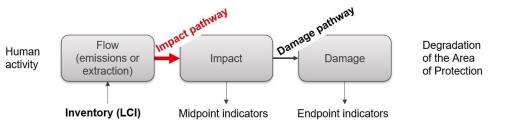
- LCA vs simplified LCA ٠
- **Different applications** •
- Criteria to choose the method ٠

Examples:


Introduction

Methods	User entry barrier (-)	Data requirements (-)	Study scope (+)	Reliability of results (+)	Ease to apply during design (+)
LCA	3	3	3	3	1
Simplified LCA	2	2	2-3	2-3	2*
Mono-criteria approaches	2	2	2	2	1
Matrices	1	2	2	1	2
Checklists	1	1	1-2	1	2
Guidelines	1	2	1-2	N/A	2-3
Lists of substances	2	3	2	2	2

* ACT aims to facilitate it.



Conclusion Modelling

REACT Project

Impact indicators

	Method	ESA Handbook v1	ESA Update	PEF	SSSD	ACT v1	ACT v2		Method	ESA Handbook v1	ESA Update	PEF	SSSD	ACT v1	ACT v2	
Environmental Indicators	Unit		Metho	dology				Environmental Indicators	Metho	odology						
Climate Change								Atmospheric Aerosol Loading								
Global Warming Potential (100 y)	kg CO2 eq.	IPCC 2007	IPCC2013 Ozone Depletion	IPCC2013	IPCC 2013	IPCC 2021	IPCC 2021	Particulate matter formation potential	kg PM10 eq/Disease	ReCiPE H	PM UNEP 2016	PM UNEP 2016	ReCiPe Midpoint (H)		PM UNEP 2016	
				1	1	1		Soot (black carbon) emissions	incidence kg		ESA LCA 2016			GSL 2023	REACT 2025	
Ozone Depletion potential	kg CFC-11 eq.	. WMO 1999	WMO 2014 + integrations	WMO 2014 + integrations	CML 2001 / WMO 1999		+ WMO 2014 + integrations	Soot (black carbon) emissions	кg	Eco	toxines			G3L 2023	REACT 2025	
									CTUe/PAF.m3.d	1			1			
		Huma	n Health	1	1		1	Freshwater ecotoxicity potential	ay	USEtox	USEtox 2.1	USEtox 2.1	USEtox		USEtox 2.1	
Human toxicity potential, cancer	CTUh	USEtox	USEtox 2.1	USEtox 2.1	USEtox		USEtox 2.1	Marine ecotoxicity potential	kg 1,4-DB eq.	CML 2002	CML 2002		CML 2001		CML 2002	
Human toxicity potential, non-cancer	CTUh	USEtox	USEtox 2.1	USEtox 2.1	USEtox		USEtox 2.1			Atmospl	heric Impact					
			e depletion		o o E to A		ootton th	Photochemical ozone formation	kg NMVOC eq.	ReCiPE H	ReCiPe 2008	ReCiPe	ReCiPe		ReCiPe 2008	
			CML 2002			CML 2002	CML 2002	potential	• .			2008	Midpoint (H)	_		
Abiotic resource depletion potential	kg Sb eq.		(ultimate	CML 2002	CML 2001	(ultimate	(ultimate	Ionising Radiation Potential	kBq U 235	ReCiPE H	Frischknecht	Dreicer et al.	ReCiPe		Frischknecht	
(metal and mineral resources)	NB on odi		reserve)	0.002	0.002	reserve)	reserve)		eq./kg U235 eq		et al., 2000 Accumulated	1995 Accumulated	Midpoint (H)	_	et al., 2000 Accumulated	
Abiotic resource depletion potential		CML2002	10001107			1000110)	1000110)	Air acidification potential	mol H+ eq.		Exceedance	Exceedance			Exceedance	
(fossil and mineral resources)	kg SB eq.	(reserve base)						Air acidification potential	kg SO2 eq.	CML2002	CML 2002	Exceedance	CML 2001		CML 2002	
Abiotic resource depletion potential								Al2O3 particle emissions	kg	ESA LCA 2016			ESA (2016)	GSL 2023	REACT 2025	
(fossil fuels)	MJ	CML2002	CML 2002	CML 2002	CML 2001		CML 2002	Re-entry Smoke Particles - RSP			1					
Metal depletion potential	kg Fe eq.	ReCiPE H						Creation Potential	kg RSP eq				SSSD 2019		REACT 2025	
			em change					Space Debris								
Land use	pt	í í	LANCA	LANCA			LANCA	Mass left in space flow indicator	kg	ESA LCA 2016	ESA LCA 2016					
		Freshwat	er Use (PB)										Politecnico di	T. Maury et		
Gross Water Consumption Potential	m3	ESA LCA 2016						Orbital Risk - Space Debris Risk	Index Score				Milano et al	al., Space	al., Space	
Water use	m3 world eq.	20112012020	AWARE	AWARE			AWARE						(2017) / SSSD 2019	Debris Index (2019)	C Debris Index (2019 + 2022)	
	m3 water ew.												University of	(2019)	(2019 + 2022)	
Water Consumption - Water Depletion	of deprived				ReCiPe			Orbital Space Use - Orbital Resource	objects.m3.year				Bordeaux et al			
Potential	water				Midpoint (H)			Depletion Potential					(2018)			
			onsumption	1				Mass disposed in ocean flow indicator	kg mass	ESA LCA 2016	ESA LCA 2016		ESA (2016)			
Primary Energy Consumption Potential	MJ	ESA LCA 2016	ESA LCA 2020			Ecoinvent,	ESA LCA 2020		I	Po	olicies					
From Commenting					Cumulative	CED HHV		Critical Raw Materials - CRM Use	kg mass				SSSD 2019		DE 4 CT 2025	
Energy Consumption				Energy Demand		non-		Potential REACH Substances - Restricted & SVHC							REACT 2025	
					Demand	renewable		Use Potential	kg mass				SSSD 2019		REACT 2025	
		Biochem	nical Flows							Ecc	onomic					
Freshwater eutrophication potential	kg P eq.	ReCiPE H	ReCiPe	ReCiPe	ReCiPe		ReCiPe	Economic Impact - Single Score	EUR 2000				SSSD 2019			
resilvater europhication potential	NB F CY.	NCCIPE II	neere	neere	Midpoint (H)		Recire		·	Ν	loise					
Marine eutrophication potential	kg N eq.	ReCiPE H	ReCiPe	ReCiPe	ReCiPe Midpoint (H)		ReCiPe	Noise Pollution - Noise Creation Potential	Av Leq / Cat				SSSD 2019			
Terrestrial Eutrophication potencial	kg N eq.		Accumulated	Accumulated			Accumulated		•	S	ocial		_			

