

ESA CLEAN SPACE DAYS

ACCURATE AND COMPREHENSIVE SPACE CAMERA DIGITAL TWIN FOR IMPROVED IOS MISSIONS

Presentation overview

INTRODUCTION

Introduction

IOS MISSIONS POSE SEVERAL CHALLENGES TO OPTICAL SENSORS

- SNR / SATURATION
- RADIATIONS
- TEMPERATURE
- STRAYLIGHT

- COMPARING SOLUTION ON DIFFERENT SCENARIOS BEFORE DESIGN PHASE.
- DENTIFYING POTENTIAL PROBLEMS OR IMPROVEMENTS FROM THE INITIAL PHASES OF DEVELOPMENT.
- MITIGATING RISK ON HARDWARE.

CAMERA DIGITAL TWIN BENEFITS FROM SODERN LONG EXPERIENCE IN STAR TRACKERS

AURICAM

IOS – SSA – Monitoring - Landing

DIFFERENT FIELDS OF VIEW: 8° / 35° / 80° (in diagonal)

MAIN CHARACTERITICS

Size	140 x 71 x 65 mm
Detector	4M pixels
Mass	<420 g
Lifetime in LEO/GEO	7/15 years
Interface	Space Wire

MAIN PERFORMANCES

Magnitude	6 – 9
Resolution	4 Mega pixels
Operational temperature	-25° up to 45° c

MAIN OPTIONS:

- Electronic Unit
- Digital twin
- EGSE & OGSE

HICAM

Navigation & Detection

DIFFERENT FIELDS OF VIEW: 17° (in diagonal)

MAIN CHARACTERITICS

Size	210 x 180 x 300 mm
Detector	1024x1024pix / 10µm pitch Detector cooling for low noise
Mass	< 3 kg
Lifetime in LEO/GEO	7/15 years
Interface	Space wire

MAIN PERFORMANCES

Magnitude	11 Distance: up to 30 000 km
Resolution	1 Mega pixels
Baseplate operating range (full perf with detector <5°C	-25° up to 20° C

MAIN OPTIONS:

- Target Imaging & Centroiding processing
- **Digital twin** (on request)
- **Electronic Unit** (on request)
- **EGSE & OGSE** (on request)

CAMERA DIGITAL TWIN

ENTIRE CAMERA DETECTION CHAIN IS SIMULATED, IN THE CONTEXT OF VARIOUS MISSIONS.

- LEO, GEO, SSO
- AT BEGINNING OR END OF LIFE
- FOR DIFFERENT ENVIRONMENTAL CONDITION: TEMPERATURE, RADIATION

STEP 1 : OPTICAL STIMULUS GENERATION

SIMULATE CELESTIAL SCENE AND ENVIRONMENT

STEP 2 : NOISING AND DIGITALIZATION

SUCCESSIVELY GENERATES AND SUPERIMPOSES LAYERS TO CREATE A MULTI-PHYSICS IMAGE.

STEP 3 : PROCESSING

REALIZES PROCESSING INCLUDED IN OPTICAL HEAD OR ELECTRONIC UNIT.

Digitalised signal

PROCESSING INCLUDES

- RADIATION/SPIKE/PARTICLE FILTERING
- Auto exposure
- Background signal correction

Auto exposure effect

USE CASES

Use cases

EVALUATE CAMERA PERFORMANCES

DIGITAL TWIN IS PARAMETRABLE FOR DIFFERENT ORBITS, AGE, TEMPERATURE ...

LEO - EOL

Use cases

EVALUATE DEBRIS DETECTION ALGORITHM

OBJECTS CAN BE ADDED WITHIN IMAGES

Point like objects

Extended objects

Use cases

EVALUATE CAMERA PERFORMANCES ON SPECIFIC CASE

FOR INSTANCE, MOON CAN BE ADDED IN THE FIELD OF VIEW

Conclusion

CAMERA DIGITAL TWIN IS A MULTI-PHYSIC SIMULATION C/C++ LIBRARY FOR ALL SODERN CAMERAS

- TRY AND ERROR AT LOW RISK AND COST.
- MAXIMIZES ACCURACY, REDUCES COSTS AND LEAD TIMES.

VALIDATED BY

- 20 YEARS OF HERITAGE FROM ATOS (STAR TRACKER SIMULATION TOOL DEVELOPED BY SODERN).
- COMPARISON WITH REFERENCE (FOR INSTANCE VALIDATED WITH ESA FOR JOVIAN ELECTRONS INTERACTIONS
 AGAINST HEAVY GEAT4/FASTRAD RADIATION CODES & GROUND TESTS).
- SIMULATION PARAMETERS FROM REAL HARDWARE MEASURED ON TEST BENCHES.
- DEVELOPED FOLLOWING SOFTWARE DEVELOPMENT GUIDELINES.

AVAILABLE IN 2025 WITH USER MANUAL.

20 aveņue Descartes 94451 Limeil-Brévannes Cedex France SODERN.COM

