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Human made objects on Moon
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Human made objects on Moon

> In future scenario -l

226,796 kg 609,160 kg 2,436,640 kg

(Available hardware mass on (ISRU hardware mass in next decade to produce 200 T/a (ISRU hardware mass till 2080 to produce
moon) _> (tonne/annum) of aluminium-silicon alloys and 680 T/a of 800 T/a of aluminium-silicon alloys and
oxygen) 2721 T/a of oxygen)

(a)CU rrent mass (b) Next decade *Data as on 03/May/((@4)(ﬂl_m mRE e excluded).

Data collected from F.J. Guerrero-Gonzalez and P. Zabel (2023)*

*F.J. Guerrero-Gonzalez, P. Zabel, System analysis of an ISRU production plant: Extraction of metals and oxygen from lunar regolith, Acta Astronaut 203 (2023)
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Source: T. Patil (2022)*

*T. Patil et al., Cyber-physical systems for end-of-life management of printed circuit boards and mechatronics products in home
automation, Sustainable Materials and Technologies (2022)
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Physical recycling method
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Recycling of space category cables

» Space category cables are an integral part of every payload

» Material compositions
» Insulator: Polyimide (Kapton)
» Conductor: Silver plated copper

Compound Concentration* Space category cable
: Silicon dioxide, (silica), SiO, 42-48% rya\viey
» Lunar regOI Ith - Aluminium oxide (alumina), AlLO, | 12-27%
I it Calcium oxide (lime), CaO 10-17%
Chemlcal CompOS|t|0n Ferrous oxide, FeO 4-18%
Magnesium oxide, MgO 4-11%
Titanium dioxide, TiO, 1-7%
Sodium oxide, Na,O 0.4-0.7%
Chromium (111) oxide, Cr,O, 0.2-0.4%
Potassium oxide, K,O 0.1-0.6%
Manganese (11) oxide, MnO 0.1-0.2%

* Concentrations varies according to specific location
Data collected from: H. Fischer (2018) and J.J. Papike, et al.(1982)
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Centrifugal mill

» Use of centrifugal - Feeder

force )\
Comminution chamber

» Size reduction Is
due to impact and
shearing force
between the rotor
and the sieve ring

Sieve ring
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Processed
materials

Silver
plated
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» Particle size, RPM,
temperature,  hold
up mass, and energy
consumption

Rotor rotation
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Percentage of material (%)

Experimental data (Particle size)
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Experimental data (Hold up mass with RPM)
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Experimental data (Hold up mass with sieve)
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Experimental data (Time vs. Temperature)

Temperature vs. Time
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Energy consumption esl'ic

e Energy consumption with inclusion of material properties,

®) (Rotational kinetic energy + Potential energy + Energy related to the material’s tensile strength + Energy related to the material’s shear strength)
e Power(P)=

efficiency

TTL‘I"ZW2
. Power ()= (T+mgh+aV+SHV)
n

e FEnergy consumption (E) =Power X Time

e FEnergy consumption (E) = Pt
Where,

Material mass (m): the mass of the material being processed.

Time of operation (t): the duration the mill operates.

Rotor radius (r): the radius of the rotor.

Efficiency (n): the efficiency of the centrifugal mill.

w. Angular velocity of the rotor (2zN/60)

Rotor rpm (N): the rotational speed of the rotor.

g: Acceleration due to gravity.

h: height of chamber.

oV Represents the energy loss due to stress applied to a material with volume V.

S-HV: Represents energy losses or savings related to material strength (S), hardness (H), and volume V of the material
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Energy consumption (n:80)
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Energy consumption (n:60)
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Comparison with thermal process
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Suggestions for lunar operation esl'ic

» Selection of the lowest possible but optimal RPM

oc Reduce energy consumption

o¢ Reduce temperature in comminution chamber
o¢ Reduce vibration to avoid misalignment, wear, and tear I1ssues
» Selection of right sieve size based on the feedstock structure and compositions
* Reduce hold up mass in comminution chamber
« Mitigate the risk of jamming
» Insulation for equipment for extreme lunar temperature

» External cooling system for lunar day operation
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Conclusions

» Growing need for EOL management of human-made materials on the moon

» Physical recycling methods, particularly centrifugal milling
» Independent from Earth-based reagents
» Optimisation of parameters such as RPM, temperature, and energy consumption.
» Lower energy consumption compared to thermal process
» Suitable for lunar constraint with minor modifications,

» Recovery of heterogeneous material possible
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Limitations and future work esl’iC

» Limitations:
« Small quantity of trial,
 limited experiment conditions,

* Does not account for the dust interference

> Future work:

 Trial with different feedstock (printed circuit boards)
« Other parameters such as operation time and feed rate

« Conduct trials in simulated conditions possibly in dusty thermal vacuum chamber (DTVC)
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