

Optimizing Multiclient In-Orbit Servicing: A Mission Analysis for Geosynchronous Satellite Refueling

Clean Space Days 2024

Bachelor Thesis of Philipp Grüning at IRS Stuttgart in cooperation with ESA

Agenda

Toolchain Optimal Sequence

Optimal Sequence Why do we need an algorithm?

Determining the optimal sequence is **not trivial**:

- Doesn't follow a simple logic like ...
 - ... following a straight line in projection plot of all GSO satellites
 - ... always going around the GEO belt sequentially
- Changing different orbital elements takes different amounts of Δv

Optimal Sequence Distance Matrix

Toolchain Transfer Simulation

Toolchain Transfer Simulation

9

Toolchain Outputs

Optimal Sequence

Transfer Sim

Outputs

Results

Outlook

Inputs

Mission Design

rs Cesa

Results

Optimal sequence

Mostly sequential around GSO belt, but increasingly deviates with growing client inclinations

Number of Transfer-Orbit-Revolutions

Full Transfer Sequence

Mission Design

Servicing mission with five clients

Toolchain

Transfer Sim

Outputs

Results

Outlook

Optimal Sequence

09.10.2024 12

Conclusion and Outlook

Toolchain optimizes multiclient-IOS missions with a relatively high degree of accuracy and minimal computational cost.

- Extending the toolchain to cover orbital regions beyond geosynchronous orbits
- Overall accuracy of the underlying concepts remains an area for continual improvement

Universität Stuttgart Institute of Space Systems

Thank you!

Philipp Grüning

E-Mail: philipp.gruening@freenet.de Phone: +49 (0) 15152175730

Multiclient In-Orbit Servicing of Geosynchronous Satellites: A Case Study on Refueling Operations

Multiclient-In-Orbit-Servicing für geosynchrone Satelliten: Eine Studie zu Betankungsoperationen

> Bachelor Thesis of Philipp Grüning

IRS-Number: IRS-24-S-049

Professor: Prof. Dr.-Ing. Stefanos Fasoulas Supervisors: Institute of Space Systems: Tharshan Maheswaran, M.Sc European Space Agency (ESA): Andrew Wolahan, M.Sc

Institute of Space Systems University of Stuttgart

September 2024

oort: Francesco Fontanot ysis and Flight Dynamics)

Image sources

- [1] European Space Agency ESA: ESA's e.Deorbit debris removal mission reborn as servicing vehicle. Url: https://www.esa.int/Space_Safety/ESA_s_e.Deorbit_debris_ removal_mission_reborn_as_servicing_vehicle (visited on 20.08.2024)
- [2] Cao, Jing; Li, Hengnian; Shen, Hongxin: "Orbital plane change maneuver strategy using electric propulsion". In: Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 233.7 (2019), pp. 2360–2367. Issn: 0954-4100. Doi: 10.1177/0954410018779315.

