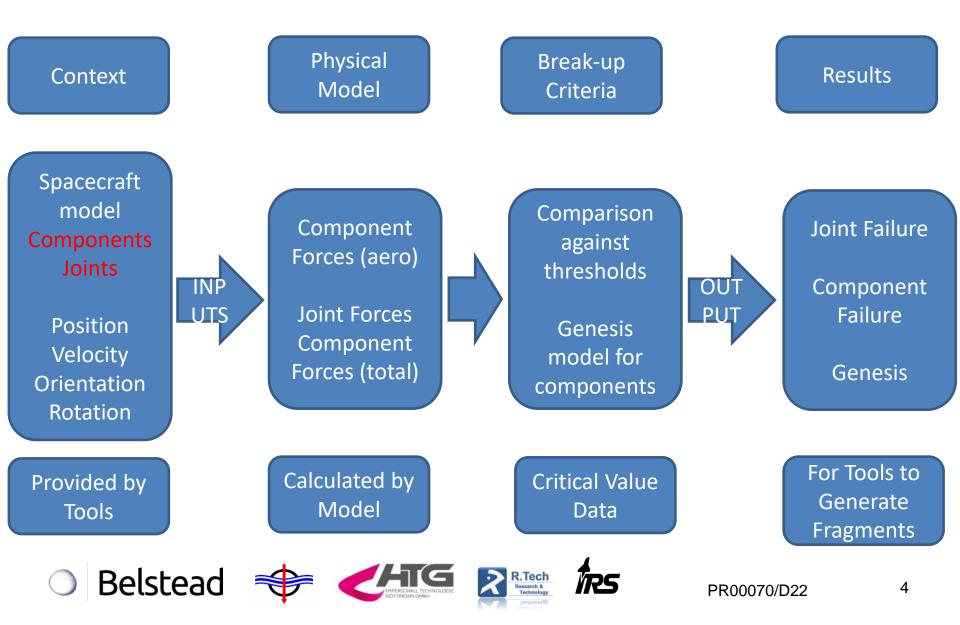


James Beck, Ian Holbrough; Belstead Research Tobias Lips, Bent Fritsche; HTG Eddy Constant; R.Tech Alan Flinton, Fluid Gravity Engineering ESA Clean Space Days, Noordwijk, October 8-11th 2024 PR00070/D22

Thermomechanical Fragmentation Model

- Objectives
 - Construct a thermomechanical fragmentation model for large structures
- Knowledge
 - Some ideas / models for bottom-up fragmentation (joint failures)
 - Some testing of spacecraft joints
 - Is there a gap to large scale fragmentation (modules / appendages)?
- ESA Activity
 - HTG (lead, SCARAB)
 - BRL (modelling, SAMj)
 - FGE (CFD, test planning)
 - R.Tech (FEM, PAMPERO)
 - IRS (Testing)
- This presentation covers the modelling

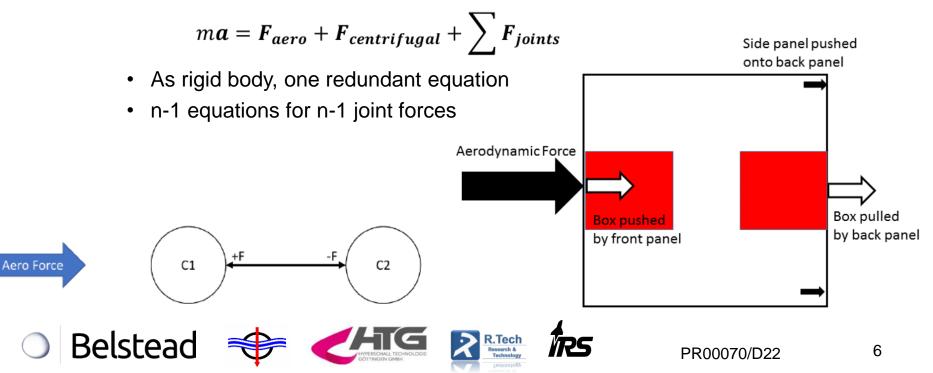


Three Separate Aspects

- Underlying Thermomechanical Physics Model
 - Heating (already done by tools), Forces (tentatively done by tools)
 - Major part of development work
- Model of Spacecraft Parts which Can Fragment
 - How do the critical parts need to be modelled?
 - How good can the guidelines be?
 - Separate from the physical model in the tools (but not really independent)
- Fragmentation Criteria to Determine Separation
 - When does the thermomechanical state indicate fragmentation?
 - How are these assigned?
 - Bookwork values?
 - Test data? (Will include phenomena such as strain effects)
 - Implicit through flight observation data?

Generic Schematic of Model

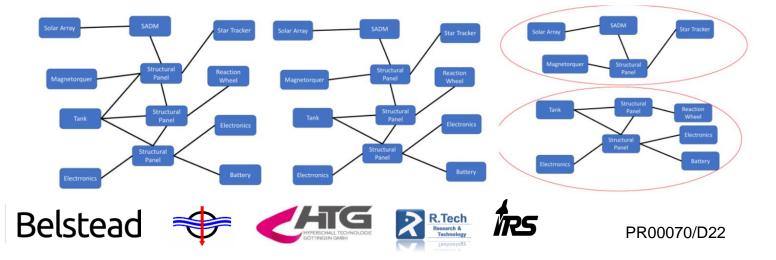
Inputs


- Spacecraft Model
 - Component-joint
 - Description as components
 - Joined by joints
 - Panel-based conversion needed
 - Group panels into components
 - Joints are virtual
 - Connect exactly two components
 - · Components (primitive collections) can be identified
 - Locations of joint connections need to be specified
- Trajectory Data
 - Position, velocity, orientation, rotation rate
 - Inherently 6dof data required
 - Orientation of force/moment important
 - Rotation of spacecraft important

NE

Model

- Acceleration of vehicle is known
 - Net acceleration of all objects is known (rigid body)
 - Acceleration from aerodynamics of each component is known
 - · Non-zero only for components in flow
 - Other force must be transmitted through the joints
 - For each component


Solution

- Network Structure
 - More joints than equations multiple solutions
 - Singular Value Decomposition method proposed Ax = b
 - x is unknown joint forces
 - b is known component forces
 - A is a matrix which defines which joints are linked to which components

 $A_{ij} = 0$ if joint j is does not connect component i

 $A_{ij} = 1$ if joint j has component i designated as 'component 1'

 $A_{ij} = -1$ if joint j has component i designated as 'component 2'

Moments

• Originally derived directly from local forces

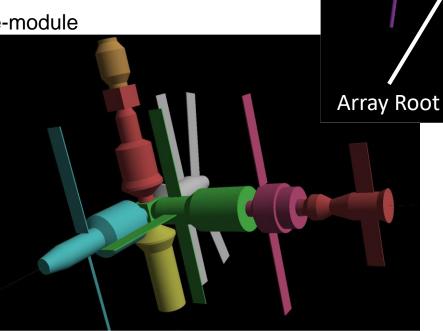
$$M_j = \sum r x f$$

- Action-at-a-distance inadequate
 - Require impact across spacecraft (as obtained for forces via SVD method)
 - Use SVD approach
- Write similar equation for moments
 - $I\ddot{\boldsymbol{\theta}} = \boldsymbol{M}_{aero} + \sum \boldsymbol{M}_{joints}$
 - Note moments are around spacecraft Cg
 - Use SVD similarly to calculate moments in joints (about Cg)
 - Move moment reference centre to joint location

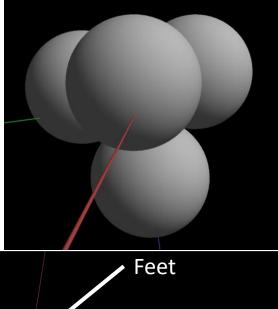
•
$$M_j = M_{cg} + rxF$$

Captures required effects

$$ma = F_{aero} + F_{centrifugal} + \sum F_{joints}$$

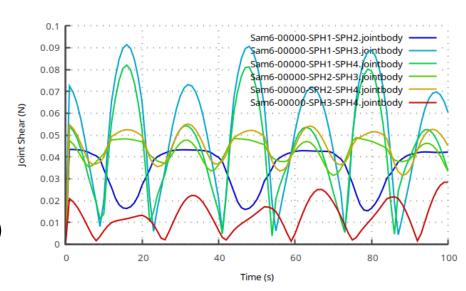

Fragmentation Events

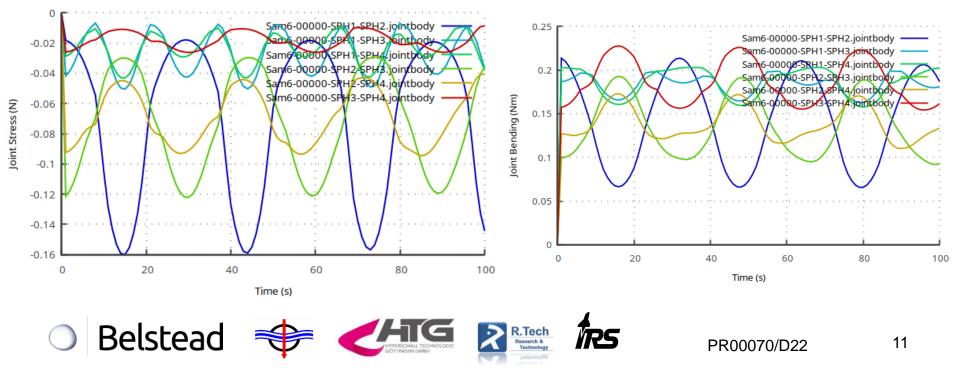
Failure Thresholds	Туре	Note
Temperature	Joint	Failure on reaching a fixed temperature
Temperature / time	Joint	Failure once the threshold temperature has been
		exceeded for a specified time
Mass loss	Component	Failure on fractional mass loss of a component
		Allows fragmentation before complete demise
Tension	Joint	Failure at a given tensile stress
	Component	Joints expected to be stronger in compression
Tension / temperature	Joint	Failure at a given tensile stress at the current
	Component	temperature
Tension / temperature / time	Joint	Failure at a given tensile stress at the current
	Component	temperature on condition that a fixed temperature
		has been exceeded for sufficient time
Absolute force	Joint	Failure at a given total stress
	Component	
Absolute force / temperature	Joint	Failure at a given total stress at the current
	Component	temperature
Absolute force / temperature	Joint	Failure at a given total stress at the current
/ time	Component	temperature on condition that a fixed temperature
		has been exceeded for sufficient time
Shear	Joint	Failure at a given shear stress
Shear / temperature	Joint	Failure at a given shear stress at the current
		temperature
Shear / temperature / time	Joint	Failure at a given shear stress at the current
		temperature on condition that a fixed temperature
		has been exceeded for sufficient time
Bending moment	Joint	Failure at a given bending moment
Bending moment /	Joint	Failure at a given bending moment at the current
temperature		temperature
Bending moment /	Joint	Failure at a given bending moment at the current
temperature / time		temperature on condition that a fixed temperature
		has been exceeded for sufficient time
Torsion	Joint	Failure at a given torsion
Torsion / temperature	Joint	Failure at a given torsion at the current temperature
Torsion / temperature / time	Joint	Failure at a given torsion at the current temperature
		on condition that a fixed temperature has been
		exceeded for sufficient time


O Belstead

Three Application Test Cases

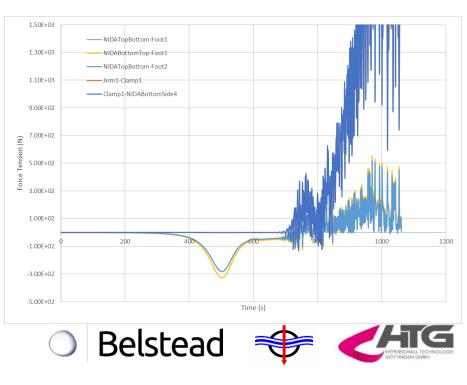
- Application Test Cases
 - Tetrahedron
 - Simple case to compare forces/moments
 - JASON
 - Array root (moment)
 - Feet (compression)
 - MIR
 - Array-module
 - Module-module

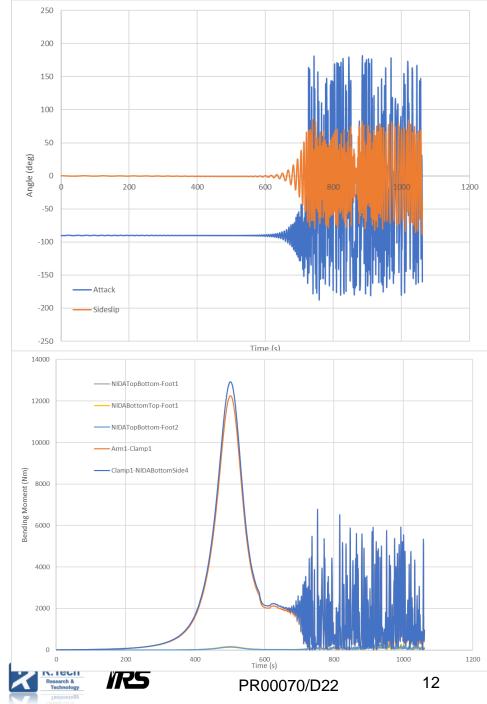



10

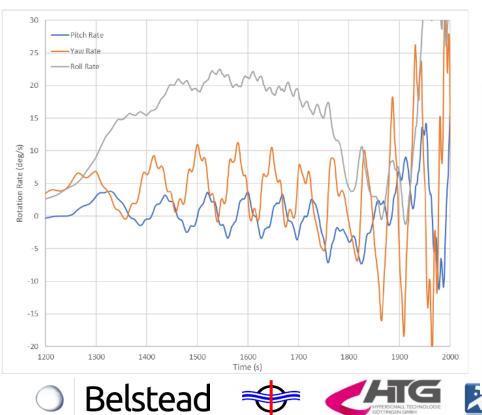
PR00070/D22

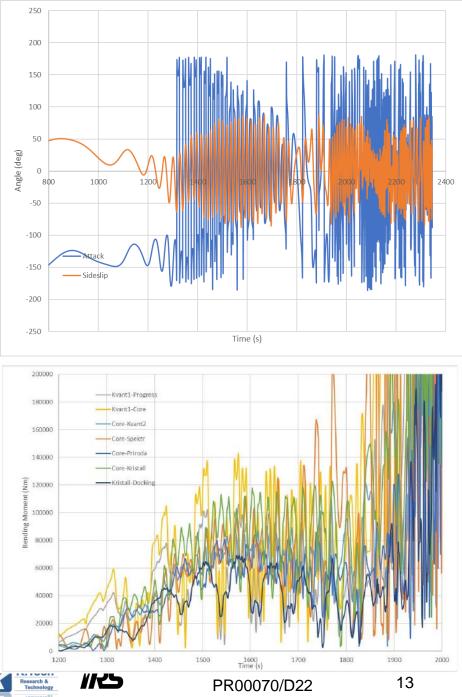
Tetrahedron Case


- Tensile force
- Shear force
- Bending moment
- Results good (Codes comparison)



JASON


- Motion is Stable
 - Very heavy launch adaptor leading
 - Peak dynamic pressure ~500s
 - ~60km
 - Feet compressed
 - Large bending moment on array



MIR

- Stable to ~95km
 - Tumbling through peak dynamic pressure ~40km (very late)
- Moments depend on rotation

Fragmentation Criteria

- Extremely Difficult to Assess
 - No clear extraction from test data
 - Bookwork values do not provide immediate answer
 - Very dependent on nature of model
- First order assessment inferred from MIR observation data
 - Reasonable solutions obtained
 - Very high uncertainties (at least an order of magnitude)
- Phenomenology not understood
 - Influence of local hot spots?
 - Which part of the structure actually fails?
 - Observation data current best guess

Summary

- Component based fragmentation model devised
 - Applicable to panel based tools
- Force/moment calculations based on rigid body motion
 - Good first order approximation
- Implementation successful
 - Across all tools
- Fragmentation criteria
 - High uncertainty
 - Use of bookwork strength values does not seem to be appropriate
 - Observation correlation current approach

15